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Preface

IbPRIA 2005 (Iberian Conference on Pattern Recognition and Image Analysis) was the
second of a series of conferences jointly organized every two years by the Portuguese
and Spanish Associations for Pattern Recognition (APRP, AERFAI), with the support
of the International Association for Pattern Recognition (IAPR).

This year, IbPRIA was hosted by the Institute for Systems and Robotics and the
Geo-systems Center of the Instituto Superior Técnico and it was held in Estoril, Portu-
gal. It provided the opportunity to bring together researchers from all over the world to
discuss some of the most recent advances in pattern recognition and all areas of video,
image and signal processing.

There was a very positive response to the Call for Papers for IbPRIA 2005. We re-
ceived 292 full papers from 38 countries and 170 were accepted for presentation at the
conference. The high quality of the scientific program of IbPRIA 2005 was due first to
the authors who submitted excellent contributions and second to the dedicated collabo-
ration of the international Program Committee and the other researchers who reviewed
the papers. Each paper was reviewed by two reviewers, in a blind process. We would
like to thank all the authors for submitting their contributions and for sharing their re-
search activities. We are particularly indebted to the Program Committee members and
to all the reviewers for their precious evaluations, which permitted us to set up this
publication.

We were also very pleased to benefit from the participation of the invited speakers
Prof. David Lowe, University of British Columbia (Canada), Prof. Wiro Niessen, Uni-
versity of Utrecht (The Netherlands) and Prof. Isidore Rigoutsos, IBM Watson Research
Center (USA). We would like to express our sincere gratitude to these world-renowned
experts.

We would like to thank Prof. Jodo Sanches and Prof. Jodo Paulo Costeira of the
Organizing Committee, in particular for the management of the Web page and the sub-
mission system software.

Finally, we were very pleased to welcome all the participants who attended IbPRIA
2005. We are looking forward to meeting you at the next edition of IbPRIA, in Spain in
2007.

Estoril, June 2005 Jorge S. Marques
Nicolas Pérez de la Blanca
Pedro Pina
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and Narendra’s Fast Nearest Neighbour
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Abstract. Nearest neighbour search is one of the most simple and used
technique in Pattern Recognition.

One of the most known fast nearest neighbour algorithms was proposed
by Fukunaga and Narendra. The algorithm builds a tree in preprocess
time that is traversed on search time using some elimination rules to
avoid its full exploration.

This paper tests two new types of improvements in a real data environ-
ment, a spelling task. The first improvement is a new (and faster to build)
type of tree, and the second is the introduction of two new elimination
rules.

Both techniques, even taken independently, reduce significantly both: the
number of distance computations and the search time expended to find
the nearest neighbour.

1 Introduction

The Nearest Neighbour Search method consists on finding the nearest point of
a set to a given test point using a distance function [3].

To avoid the exhaustive search many effective algorithms have been devel-
oped [1]. Although some of such algorithms as K-dtrees, R-trees, etc. depend on
the way the points are represented (vectors usually), in this paper we are going
to focus on algorithms that does not make any assumption on the way the points
are represented making them suitable to work in any metric space.

The most popular and refereed algorithm of such type was proposed by Fuku-
naga and Narendra (FNA) [1]. Although some recently proposed algorithms are
more efficient, the FNA is a basic reference in the literature and in the develop-
ment of new rules to improve the main steps of the algorithm that can be easily
extended to other tree based algorithms [2, 0, 9].

* The authors thank the Spanish CICyT for partial support of this work through
project TIC2003-08496-CO4, GV04B-541, GV04B-631, and the IST Programme
of the Europen Community, under the PASCAL Network of Excelence, [IST-2002-
506778. This publication only reflects the authors’ view.
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Recently we proposed some improvements in this algorithm [11] that reduce
significantly the number of distance computations. However, those improvements
were tested only with data represented in a vector space. In this work the algo-
rithm is checked in a spelling task where the points are represented by strings
and the distance function is the edit distance. Also we compare our proposal
with Kalantari and McDonalds method as well as with FNA.

2 The Fukunaga and Narendra Algorithm

The FNA is a fast search method that uses a tree structure. Each node p of the
tree represents a group of points S, and is characterised by a point M, € S,
(the representative of the group S,), and its distance R, of the farthest point in
the set (the radius of the node). The tree is built using recursively the c-means
clustering algorithm.

When a new test point x is given, its nearest neighbour n is found in the tree
using a first-depth strategy. Among the nodes at the same level, the node with
a smaller distance d(z, M,) is searched earlier. In order to avoid the exploration
of some branches of the tree, the FNA uses a prune rule.

Rule: if n is the nearest neighbour to # up to the moment, no y € S, can be
the nearest neighbour to x if

d(z,n) + R, < d(xz, Mp)

This rule will be referenced as the Fukunaga and Narendra’s Rule (FNR)
(see fig. 1 for a graphical interpretation).

The FNA defines another rule in order to avoid some distance computations
in the leaves of the tree. In this work only binary trees with one point on the
leaves are considered. On such case the rule related to leaf nodes becomes a
special case of the FNR and will not be considered on the following.

Fig. 1. Original elimination rule used in the algorithm of Fukunaga and Narendra
(FNR).



Testing Some Improvements 5
3 The Search Tree

In previous works [11] some approximations were developed as an alternative
to the use of the c-means algorithm on the construction of the tree. The best
behaviour was obtained by the method called Most Distant from the Father tree
(MDF). In this work this strategy is compared with c-means strategy' and with
the incremental strategy to build the tree proposed by Kalantari and McDon-
alds [5], since this last strategy builds a binary tree similar to ours. Given a set
of points, the MDF strategy consists on

— randomly select a point as the representative of the root node;

— in the following level, use as representative of the left node the representative
of the father node. The representative of the right node is the farthest point
among all the points belonging to the father node;

— classify the rest of the prototypes in the node of their nearest representative;

— recursively repeat the process until each leaf node has only one point, the
representative.

This strategy reduces the computation of some distances in the search proce-
dure as the representative of the left node is the same than the representative of
its father. Each time a expansion of the node is necessary, only one new distance
should be computed. Note that the construction of this tree is much faster than
the construction of the FN tree where the c-means algorithm is used recursively.

While in the MDF method the average time complexity is O(nlog(n)), in
the case that c-means algorithm is used, the average complexity is O(n? log(n)).

4 The New Elimination Rules

In the proposed rules, to eliminate a node ¢, also information related with the
sibling node r is used.

Fig. 2. Sibling based rule (SBR).

1 As data are strings, the mean of a set of points can’t be obtained. In this case the
median of the set is used (c-medians).
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4.1 The Sibling Based Rule (SBR)

The main idea of this rule is to use the distance from the representative to the
nearest prototype of the sibling node. If this distance is too big, the sibling node
can be safely ignored. Kamgar-Parsi and Kanal [10] proposed, for the FN al-
gorithm, a similar rule (KKR), but the distance from the mean to the nearest
prototype in the node was used. Note that in our case the representative is al-
ways a prototype in the node, then this distance is always zero. Moreover, in our
case the rule allows the pruning of the sibling node, in the KKR case is the own
node that can be pruned.

A first proposal requires that each node r stores the distance between the rep-
resentative of the node, M,, and the nearest point, e;, in the sibling node /.

Definition 1. Definition of SBR: given a node r, a test sample x, an actual
nearest neighbour n, and the nearest point to the representative of the sibling
node £, ey, the node £ can be pruned if the following condition is fulfil (fig. 2):

d(M,,ep) > d(M,,x) + d(x,n)

Unlike the FNR, SBR can be applied to eliminate node ¢ without compute
d(My, x). That permits to avoid some distance computations in the search pro-
cedure.

4.2 Generalised Rule (GR)

This rule is an iterated combination of the FNR and the SBR. Given a node ¢,
a set of points {¢;} is defined in the following way:

G1 =5
t; = argmax, ¢, d(p, My)
Gi+1 = {p e G d(p, Mr) < d(fi, MT)}

where M, is the representative of the sibling node r, and GG; are auxiliary sets
of points needed in the definition (fig. 3). In preprocessing time, the distances
d(M,,t;) are stored in each node ¢. In the same way, this process is repeated for
the sibling node.

Definition 2. Definition of GR: given two sibling nodes £ and r, a test sample
x, an actual nearest neighbour n, and the list of point ty,ts, ..., ts, the node £
can be pruned if there is an integer i such that:

d(M,, ti)
d(My,tit1)

(M, z) + d(z,n)

d 1)
d(Mz,:E) —

>
< 2)

U
—~

)

(

(
Cases i = 0 and 7 = s are also included not considering equations (1) or (2)
respectively. Note that condition (1) is equivalent to SBR rule when i = s and
condition (2) is equivalent to FNR rule when ¢ = 0.
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an,,t,)

a(M,, t,) da(M,, t,)

Fig. 3. Generalised rule (GR).

5 Experiments

To show the performance of the algorithm some tests were carried out on a
spelling task. A database of 38000 words of a Spanish dictionary was used. The
input test of the speller was simulated distorting the words by means of random
insertion, deletion and substitution operations over the words in the original
dictionary. The edit distance was used to compare the words.

Increasing size of dictionaries (from 1000 to 38000, 9 different sizes) was
obtained extracting randomly words of the whole dictionary. The test points
were 1000 distorted words obtained from randomly selected dictionary words.
To obtain reliable results the experiments were repeated 10 times. The averages
and the standard deviations are showed on the plots. The distance computation
is referenced per test point, and the search time per test set.

In order to study the contribution of the elimination rules FNR, FNR+SBR
and GR a first set of experiments were carried out using the original c-means
tree construction of the FN algorithm (fig. 4).

As was expected, the addition of the SBR reduces slightly the number of
distance computations and the search time, but GR reduces them drastically
(to less than one half).

A second set of experiments were carried out in order to compare the MDF
method of tree construction to the original c-means method (using the FNR)
and to the incremental strategy proposed by Kalantari and Mc-Donalds (KM).

Figure 5 illustrates the average number of distance computations and the
search time using the c-means, KM and MDF tree construction methods. It can
be observed that the MDF reduces to less than one half the number of distance
computation and the search time.
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Fig. 4. Comparison of FNR, FNR+SBR and GR elimination rules using the c-medians
tree construction.
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Fig. 5. Comparison of c-medians, KM and MDF methods to build the tree using the
FNR elimination rule.
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Fig. 6. Comparison of FNR, FNR+SBR and GR using a tree constructed with MDF.

Once stated that the MDF method is superior that the c-means method, a
third set of experiments were carried out in order to study the contribution of
FNR, FNR+SGR and GR with a tree constructed following MDF method.

As figure 6 shows, the number of distance computations and the search time
decrease using the new rules although now the reductions are not so impressive
that in the previous cases.
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Nevertheless, comparing the distance computations and the search time of the
original algorithm (fig. 4, FNR) to the algorithm using GR and MDF (fig. 6,GR),
it can be observed that applying both techniques at the same time the distance
computations and the search time can be reduced one third.

6 Conclusions

In this work two improvements of the Fukunaga and Narendra fast nearest neigh-
bour algorithm was tested in a spelling correction task.

The first improvement is a new method to build the decision tree used in
the FN algorithm. On one hand, to build the tree with this method it is much
faster than with the original one and, on the other hand, the use of this method
reduces the number of distance computations and the search time to one half in
our experiments. The use of the KM way to build the tree increases the number
of distance computations even more than with the original method. The second
modification is the introduction of two new elimination rules. The use of the GR
rule reduces to one half the number of distance computations and the search
time. Both improvements can be applied together reaching reductions to one
third in the distance computations and the search time.

On this work the generalised elimination rule was implemented in a quite
naive way by means of an iterative procedure. Now we are interested in imple-
menting this rule using a more adequate algorithm to obtain further search time
reductions.

We believe that these approximations can be extended to other nearest neigh-
bour search algorithms based on a tree structure.
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Abstract. The process of mixing labelled and unlabelled data is being
recently studied in semi-supervision techniques. However, this is not the
only scenario in which mixture of labelled and unlabelled data can be
done. In this paper we propose a new problem we have called particular-
ization and a way to solve it. We also propose a new technique for mixing
labelled and unlabelled data. This technique relies in the combination of
supervised and unsupervised processes competing for the classification
of each data point. Encouraging results on improving the classification
outcome are obtained on MNIST database.

1 Introduction

The process of mixing labelled with unlabelled data to achieve classification
improvement is being recently addressed by the community in the form of semi-
supervision processes. This is a general denomination for a recently novel prob-
lem of pattern recognition based on the improvement of classification perfor-
mance in the presence of very few labelled data. This line of work become very
active since several authors point out the beneficial effects that unlabelled data
can have [1-7].

However this is not the only scenario in which we can apply this mixture.
Consider the following examples: Imagine a problem of handwritten character
recognition, in which we know that all the characters in the document are writ-
ten by the same author; consider an architect drawing a technical plane with
its own symbols; a medical application in which we know that the data we need
to classify proceeds from a single patient; the problem of face recognition, with
a significative data set representing what a face is, and a huge set of data rep-
resenting what a face is not. In all these problems there is a common fact, the
knowledge of the fact that our test data set is a particular subset of the general
training data set.

On the other hand, this problem is widely recognized in other domains, such
as human learning theory [3] or natural language processing [9]. In those domains,
research is done in the line of finding the context of the application given a wide
training set. In particular, a general language training corpus has to be changed
for domain-specific tasks. This task is called adaptation.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 11-18, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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On the image domain, the work of Kumar et al. [10] use an EM based refine-
ment of a generative model to infer the particularities of the new data, in what
they call specification.

Here, the particularization problem refers to all those problems in which we
can assume the test set to be intrinsically highly correlated and that it is not
represented by the overall training set. A common descriptor in the examples
described earlier is the fact that the intra-variability of the particular data is
smaller than the inter-variability of the overall training set. This a priori knowl-
edge is the basic premise for the problem we propose and aim to solve.

In order to exploit this knowledge we will use a mixed approach of supervised
and unsupervised processes. The supervised process takes into account the gen-
eral decision rule (the inter-variability of the complete training set), while the
unsupervised process tries to uncover structure of the data (the intra-variability
of the test set). The strategy used will be to express both processes using the
same framework. The supervised rule will be used to deform the classification
space, while the unsupervised process gathers data together in the deformed
space. This process is called Supervised Clustering Competition Scheme,
SCCS from now on.

2 Supervised Clustering Competition Scheme

2.1 General Framework and Main Goal

We aim to find an integrated framework for supervised and unsupervised clas-
sification processes so that both can compete for the classification of a data
point. In this sense, the clustering methods will lead the data based on the min-
imization of a dissimilarity measure or maximization of a similarity measure,
and the supervised classification process has to guide the data according to the
classification borders. Since both techniques has to compete, we cast both pro-
cesses in the same minimization framework. Though, the clustering scheme can
be casted into it straightforwardly, the same does not happen to the supervised
process. This last process must be reformulated. Therefore, in order to blend
both processes we use the following equation,

L(x) = h(ming(a - SF(x) + (1 —a) - UF(x))) (1)

where SF stands for supervised functional, a functional the minimums of which
are close to the centers of each class and that has an explicit maximum on
the border between classes; UF stands for unsupervised functional, expressing
a dissimilarity measure; « is the mixing parameter; and the function h(-) is a
decision scheme that allows the classification of each data sample.

To minimize this process we can use gradient descent,

ox

o = —VF(x)

The iterative scheme is,

Xt+1 = Xt — VAV VF(X)
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where VF(x) = {0F (x)/0z;}. Therefore,

ox VSF(x) VUF(x)

ot = " vsrol ~ T Ivur| @

The next step is to define the minimization process that represent the super-
vised classification and the clustering process.

Similarity Clustering. When considering the unsupervised functional, we are
interested in tools for robust clustering related to invariability of the initial
state, capability to differentiate among different volumes of different sizes and
toleration to noise and outliers [1-3].

In the approach we have chosen [1] a similarity measure between two points
S(z;, ;) is used in a maximization framework. Our goal is to maximize the total
similarity measure Jg(x) defined as:

I ICERS

=1 j=1

where f(-) is a monotone increasing function, x represents the centers of each
cluster and z is the original data set (where z = {z1,...,2,} and z; is a D-
dimensional data point). As a similarity relation S(z;,z;), we use,

2
llej—qll

S(zjz)=eC "5 )

where 3 is a normalization term. Let the monotone increasing function f(-) be,
fO=07 >0

Therefore, the complete similarity measure Jg(x) is,

L a1 12

NG ) 3)

=1 j=1

The parameter [ is superfluous in this scheme and can be defined as the sample

variance,
Tz — 2P "oz
Zj_l || J H Where 5= Zg_l J
n

0=
The parameter v gains a considerable importance in this scheme since a good
estimate induces a good clustering result. The process of maximizing the total
similarity measure is a way to find the peaks of the objective function J,(x).
It is shown in [1] that the parameter + is used as a neighboring limiter, as well
as a local density approximation. To find v one can use an exhaustive search
of the correlation of the similarity function for each point when changing the
parameter. If the correlation value is over a certain threshold, we can consider
that the similarity measure represents the different variability and volumes of

n
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the data set accurately. The authors set this threshold experimentally to 0.97
but can change according to the application.

The similarity clustering approach uses the same similarity function but, as
it is a self-organizing approach we define the initial data and centers by the

unlabelled data points z° = xY,
n llzj—2p 112
UF(x) = Js(x) = - , =1l...n
j=1
Getting its gradient, we obtain,
ol LE *mkHQ 'Y
VUF(x) = -2 Z ) (zj —ar), k=1...n (4)

2.2 Supervised Classifier Functional

The definition of the supervised classifier functional should be made so that
both processes can interact with each other. Therefore, we must reformulate the
supervised classifier process as a self-organizing iterative process.

Without loss of generality, we restrict our classifier design to a two class
supervised classification process using a Bayesian framework with known class
probability density functions. Assuming that we can estimate each class proba-
bility density function fa(x|c = A) and fp(x|c = B), the optimal discriminative
rule using a Bayesian approach is given by,

Moo= {2 AP > S = DyEE)
B f(xle= A)P(4) < f(xlc = B)P(B)

If a priori knowledge of the probability appearance is not known, we assume
P(A) = P(B).

The manifold we are looking for, must maintain the optimal borderline as a
maximum, since we want the minimums to represent each of the classes. It can
be easily seen that the following family of functions satisfies the requirement,

SF = —(f(x|c = A) — f(x|c = B))*V, VN € {1..00} (5)

In order to obtain a feasible closed form of the functional we can restrict the
density estimation process to a Gaussian mixture model,

SF(x) = fk(x) = Zﬂigi(xa t;)

where M), is the model order and g;(x,6;) is the multidimensional gaussian
function,

1

) oy — — 3 (X—p)TE TN (X~ i)
gi(x, i, Xi) = (27r)d/2|21-|6 2 (X—p Iz

where 0; = {u;, X;} are the parameters for the gaussian, the covariance matrix
and the mean, and d is the dimensionality of the data.
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2.3 The Procedure

Summarizing the overall procedure, we begin the process with three data sets,
the labelled data, the unlabelled data and the test set.

Labelled data is used to create the model for the supervised functional as
well as used for the final decision step. Unlabelled data feeds the competition
scheme and it is the data that will be labelled according to the balance of the
supervised and unsupervised processes. The final algorithm is as follows:

Step 1: Determine a supervised set L of data among labelled data and a set
U of unlabelled data.

Step 2: Estimate SF(x) z € L from (5).

Step 3: Apply the CCA“ step to set the parameter v of UF(x) z € U.

Step 4: Feed the competition scheme by evolving the clusters (that come
from unlabelled data U) according to (2) and let them converge.

? Please refer to [1] for further information on this process.

3 Experimental Results

To illustrate the behavior and the advantages of the Supervised Clustering Com-
petition Scheme in a real particular problem, we have performed our tests on
data from the MNIST handwritten characters database.

3.1 Experiment Settings

In order to exemplify the behavior of the methodology we have chosen a full
supervised classification scenario in which an OCR is used to distinguish between
two hand written digits. In order to ensure structure in the data, we aim for the
classification of data of a single writer at a time, in the same way as if the OCR
was scanning and recognizing the digits in a single sheet of paper.

We have used the MNIST digits database with images of 128 x 128 pixels.
The feature extraction process has been a 4 x 4 zoning procedure on the 64 x 64
central values of the image. The number of white pixels is counted and stored
as a feature. Therefore we have a 16 dimensional feature space. The training set
is composed by 100 different hand-written sets of 120 digits each one (The first
100 writers of the HSF7). Each set corresponds to a different writer. The test set
is a 500 different hand-written sets of 120 digits each one (The first 500 writers
of the HSF6). We center the experiment in a two-class classification process
distinguishing number ONE from number TWO. From the set of features we have
selected automatically two of the most discriminative ones using discriminant
analysis.

Figure 1 shows the two class classification problem. The figure represents the
feature space associated to the training set of the digits “two” and “one”. As
one can see, the training set is general and contains different instances of the
digit “two” with different particularities. However, not always a general purpose
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Fig. 1. Feature space representation of the training set. The asterisks represents the
test set. The shadow areas represents a possible partition of the training set that solves
the two class problem.

classifier is needed. If our particular instance of the problem is a subset of the
general set, we can focus on extracting some information of the test data, so we
can constrain the training space. The asterisks are the test data for the digits
“one” and “two” written by the same writer. The shadowed areas represent
possible subsets of the training data which characterize our test data. We can
see that this subproblem has much more structure than the original one and
that the intra-variability of the particular set is lower than the variability for all
writers. In this scenario we can use the SCCS.

Figure 2 shows a representative set of hand-written digits. Figure 2.a shows
the variability of the digit “two” written by different writers. Figure 2.b shows
the variability of the digit “two” written by just one author.

Experiment Results. As a ground-truth unsupervised classifier we have used
Expectation-Maximization with K-Means initialization, and a supervised la-
belling for the cluster centers. This process yields a recognition rate of 89.35%.
The supervised classifier related to the whole training set achieves a recognition
rate of 87.65%. This supervised classifier is the same we are mimicking with
the supervised functional, so that we can compare performances of adding the
unsupervised process.
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Fig. 2. (a) Set of digit “two” written by different authors. (b) Set of digit “two” written
by the same writer.

Table 1. Comparative table for fixed a values.

Mixing value Recognition Rate Overall Gain

0 87.73% 0.08%
0.05 87.16% —0.49%
0.1 87.49% —0.16%
0.15 87.89% 0.24%
0.2 87.73% 0.08%
0.25 88.14% 0.49%
0.3 89.67% 2.02%
0.35 90.65% 3.00%
0.4 93.07% 5.42%
0.45 92.59% 4.94%
0.5 87.65% 0.00%

Table 1 shows the behavior of the process for different fixed values of the
parameter o. The parameter v is set to adapt automatically. The second col-
umn refers to the recognition rate of the overall process. It can be clearly seen
that a mixture of supervised and unsupervised improves the performance of the
supervised classifier. We must take into account that when o > 0.5 the pro-
cess behaves as a pure supervised classifier, thus, we only show the results for
a between 0 and 0.5. The third column (Overall Gain) represents the percent-
age of gain or degradation of the process as the difference between the error
of the process and the error achieved using the supervised classifier. Positive
values are gain in performance. Negative values are degradation of the process
performance. Hence, for a = 0.1 the process performs worse than the supervised
classifier. This is particularly obvious in the sense that low values of & mean a
nearly no contribution of the supervised process, and therefore, the classification
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is made with the unsupervised process alone. As we can see, the discriminative
power of the resulting classifier improves by more than a 5% the classification
results obtained by the supervised classifier without the unsupervised part.

4 Conclusions and Future Lines

In this paper we have introduced a new competition technique for pattern recog-
nition that combines supervised and unsupervised approaches. This technique
exploits the structure of the data set to be classified and adds this feature to a
classical supervised classification process based on generative models.

The method we propose has been used in an emerging problem of particular-
ization. The results using real data of MNIST database with 500 writers show
that the SCCS improves the performance of the supervised rule alone by more
than 5%. This method has been particularized for a multidimensional two class
problem, we are now developing the formulation for the basis of the multi-class
supervised functional.
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Abstract. The problem of adaptive minimization of globally unknown func-
tionals under constraints on the independent variable is considered in a stochas-
tic framework. The CAM algorithm for vector problems is proposed. By resort-
ing to the ODE analysis for analysing stochastic algorithms and singular pertur-
bation methods, it is shown that the only possible convergence points are the
constrained local minima. Simulation results in 2 dimensions illustrate this re-
sult.

1 Introduction

There are engineering optimization problems in which the global form of both the
cost functional and the constraints are unknown. In these problems, when the inde-
pendent variable is settled to a specific value, the corresponding value of the func-
tional can be read and the decision whether the constraints are or are not being vio-
lated can be made. The solution amounts to a number of values applied to the plant
according to a functional and constraint models, which are adapted from incoming
data. Although these extremum seeking methods have already been the subject of
early literature in Adaptive Systems — see [3] for a review — they are receiving in-
creasing interest in recent literature.

This kind of problems are solved in [1,6] by using a self-tuning extremum seeker
in which the cost functional is locally approximated by a quadratic function and no
constraints are assumed in the independent variable. In this work, the above algorithm
is extended for incorporating constraints and the use of vector independent variable.

2 Problem Formulation

Let y(-) be a differentiable function of %*in K. Consider the following problem
Problem 1 Find x* = [xl* x5 ]T such that y(x*) is minimum, subject to the set of con-
straints g(x* )£ 0 where ge R" and 0 is the null vector. O

According to the Kuhn-Tucker theorem, Problem 2 is equivalent to the following

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 19-26, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Problem 2 Define the Lagrangean function £(x,p)i y(x)+p g(x).

Find the x” minimizing £(x,p*), in which p* is a vector of Lagrange multipliers, sat-
isfying the Kuhn-Tucker complementary condition where % is the term-by-term mul-
tiplication:

p'xglx’)=0 M
0

Hereafter, the following assumption is supposed to hold:

HO. The global form of functions y(-) and g(-) is unknown and may be possibly time

varying. However, for each x, y(x) and g(x) may be observed, possibly corrupted by
observation noise. O

3 The CAM Algorithm

The algorithm that solves Problem 2 must accomplish two tasks: the adjustment of the
Lagrange multipliers p in order to fulfill the Kuhn-Tucker complementary condition
(1) and, once p is settled, to adjust x().

3.1 Adjustment of the Lagrange Multiplier

Following the development in [4] p is adjusted according to a gradient minimization
scheme:

ple) = pli=1)+ erle~ple ~1xe(x(r) @
where £is a vanishing small parameter and {y(¢)} is a sequence of positive gains [5].

3.2 Adaptive Optimization

HL. It is assumed that, close to X , the Lagrangean function £(x,p’) may be approxi-
mated by a quadratic function:

L) £(x(e)p)= £ +[x()-x T Alx(e)=x*]+2(0) 3)

a ap

in the sequel it will be assumed A ={ } to be symmetric, which does not affect

Ay Ay
the problem generality. A, £ and X  are unknown parameters, which depend on the
value of p;e is aresidue.

Define the increments:

AL L(e)-Lle-1) A= 051 5 i=12 "

A= 0)-22-1)  i=12 A= () 5 05 (1) (- )

i

Then equation (3) may be written as

aL)=lo, -~ oAl An() AE) A() Alyxy ]l +el) )



Adaptive Optimization with Constraints: Convergence and Oscillatory Behaviour 21

where 6 =—2a;,x; —2ap,x, 0, =ay 0; =2a,

0, =2a5x, —2a,,x, 0, =ay

A
and e(t)=e(r)-e(t—1) is assumed to be an uncorrelated zero mean stochastic sequence
such that all moments exist.
A

Defining 0°=[6, --- 6] and

(p(t)i[Axl (t) Ax, (t) Ax? (t) Ax? (t) A[xlxz ](t)]T expression (5) yields

AL()=6"(c)+elt) ©)

which constitutes a linear regression model in which " is the vector of coefficients to
estimate and @ is the data vector.

The vector 8 may be estimated using a recursive least-squares algorithm, and the
value of x that minimizes L(xX) is given by:

T
[x* x*]r 1266, -6,6; 26,6, -6,6; (N
1 2 -
07 — 46,6, 07 — 46,0,

3.3 The CAM Algorithm

Combining both the above procedures results in the following Constrained Adaptive
Minimization (CAM) algorithm:
1. Apply x(¢) to the system and measure y(¢) and g(x(r))
2. Adjust the Lagrange multiplier vector according to equation (2).
3. Build the Lagrangean function associated with the current Lagrange multiplier
vector and the current value y(f).
4. Compute the increments (4).

5. Using a RLS algorithm update the estimates of 0 in the model (6).
6. Update the estimates according to
T
[ x] = 29;84 - 0,0; 26?;(93 - 6,6 onle) ®)
62 — 46,6, 62 — 46,6,

7. Increment the time and go back to step 1.

4 ODE Analysis

The CAM algorithm is now analyzed using the ODE method for analyzing stochastic
algorithms [5] and singular perturbation theory for ordinary differential equations [2].
The algorithm is associated with the following set of differential equations:

d:;gt) = gp(t)>.<g(x(t)) d:;gt) =R'f(8,p) ©)

where  R=Elo(t)e” ()] and £(0.p)=Efp(faL()- o (0]
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Define the functions G(60,p) and H(6,p)

A A .
G(0.p)=R"'f(0,p)  H(0,p)=pxg(x()) (10)
Making use of (10) and changing the time scale by z =&, equations (9) may then
be written in the standard form for singular perturbation analysis:

dp(z) d0(z)
= H 0, £ = G 05
S =H(0.p) 5 =Gl.p) (11)

According to the ODE theory exposed in [5], the only possible convergence points
of the CAM algorithm are the equilibrium points of (11), such that the Jacobian ma-
trix has all its eigenvalues in the left complex half-plane:

o on
| op 00
7l 2 1
Jp 90
H2. The disturbance signal 1 in (8) ensures the persistent excitation requirement, i.e.
Elo(z)p” (z)] is full rank. 0
H3. The function G(@,p*) has isolated real roots a

The equilibrium points of (11) are characterized by one of the following condi-
tions:

A-equilibria
p=0  £(6,0)=0 (13)

B-equilibria
g(x)=0 andthusp=p f(O,p*)=0 (14)

4.1 Analysis of the A-Equilibria

If (13) holds the constrained minimum equals the unconstrained minimum. The con-
strained minimum is therefore interior to the region defined by the set of constraints.

If the persistent excitation requirement holds, as %ﬂ:o, the Jacobian matrix (12)
0

becomes lower triangular and its eigenvalues are the ones of ?TH =[gx)], and aa% =1,
p

where I is the diagonal unit matrix and [g(x)], is a diagonal matrix whose elements

are the g«(x). As p=0 which implies g,(x)<O0, all the Jacobian eigenvalues have nega-
tive real parts. Thus the only possible convergence points are solutions of Problem 1.

4.2 Analysis of the B-Equilibria

If (14) holds the constrained minimum is different from the unconstrained minimum,

being located on the boundary of the region defined by g(x)<0 . In this case %—I; isno
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longer null. Thus, the Jacobian matrix is not lower triangular, and the analysis from
the previous section does not hold.

Making use of the singular perturbation theory (Kokotovic, ef al., 1986), assuming
that the parameter €in (2) is vanishing small the two equations in (11) may be seen as
the slow and fast subsystems, respectively.

Assume that H3 holds and consider the boundary layer correction  6=0-0
whose dynamics is

dO

= =~alop) (15)

H4. Assume that 6(7): 0 is an equilibrium point of (15), asymptotically stable, uni-
formly in p*, and that 8(0)—8(0) belongs to its domain of attraction. 0

Proof of H4: It follows from Z—e = lR’lE{(p(t)[(pT (t)(ﬁ - 0)+ e(t)]}: Lrre-—Ls 0o
T € € £

HS5. The eigenvalues of —%G , calculated for £=0, have strictly negative real part. O
0G 0 ~
P HS5: 1t Its fi —=——R“E =——0=-1 O
roof of results from =2 = -2 { (r)o” (z )}B =5

Since these assumptions hold, Tikhonov’s theorem (Kokotovic, et al., 1986) allows
to conclude that the only piossible convergence points of the CAM algorithm are the
constrained minima of the optimization problem 1.

5 Simulation Results
The ODE analysis characterizes the possible convergence points of the CAM algo-

rithm. Yet, it does not prove that the algorithm will actually converge. In order to ex-
hibit the algorithm convergence features, a number of simulations are presented.

5.1 Example 1

In this example Problem 1 is considered, in which

y(x)= (x—xo)r(x—xo) where x, = [0.6 0.8]" (16)
g, (x)=3-x,e""7 <0 g;(x)=x, -1 <0 gs(x)=x, -3 <0
a7)
2, (x)=-x, <0 g4(x)=2-x, <0

The identification is performed using RLS with exponential forgetting factor.

Figure 1 presents the evolution of the optimum estimate towards the feasibility re-
gion. The constrained minimum is on the frontier of the region. Thus while the La-
grange multipliers related to the inactive constraints go to zero (p, — 0), those related

to active constraints converge to the optimum p, — p" (figure 1.c).
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Fig. 1. Adaptive optimum search from example 1. a) The gray area is the feasibility region.
b) x; and x, time evolution. ¢) Evolution of the Lagrange multipliers

5.2 Example 2: Multiple Local Minima

The ODE analysis presented states that the convergence points are local minima from
the constrained optimization problem. Thus, it is interesting to see what occurs when
more than one minimum exists. In this example the function to be minimized is given

by y(x)= 9+%x, —4x, +x{ +2x; —2x,%, +x; —2x{x, and it is subject to the constraint

g(x)=24.25-(x? +x2)<0.

Experiments using the updating scheme from equation (8) have shown that with
this scheme assumption H1 and equation (6) would not hold. Thus in the experiment
presented the updating scheme (8) was replaced by the following gradient scheme:

oL /|oL

x(r+1)=x()-0% /15 (18)

Figure 2.a presents the algorithm evolution when it starts from the initial point
x(0)=[-1.9 7.951". It converges towards a local minimum, located at x* = 2 as1],

with a value of the objective function of 19.6.
In figure 2.5 the algorithm is started from a different initial point, x(0)=[0.198
6.95]". In this case it converges to another local minimum located at x =[2.14 4.51]",
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which corresponds to a value of the objective function of 1.21 (the absolute con-
strained minimum).

The minimum to which the algorithm converges depends on the initial point x(0),
and in which domain of attraction it lies.

x1

Fig. 2. Adaptive optimum search for Example 2. The feasibility region lies outside the bold
line. @) x(0)=[-1.9 7.95]" b) x(0)=[0.198 6.95]"

5.3 Example 3: Improved Performance

In example 2, the adaptation presents a strong transient that strongly violates the fea-
sibility region. This results from the dynamics (2) of the Lagrange multiplier p. In
order to improve the algorithm performance the gain K¢) is computed according to the

following scheme:
ANt -1)+k t
]/(t): sat{min,max, [ ﬂ;(at {fy)’oo’;i()’}( ))]} (19)

where sat{min, max, z} corresponds to the function that saturates z between the val-
ues min and max.

Results of the algorithm performance with this modification are presented in fig-
ure 3. The adaptation converges towards a local minimum and does not strongly vio-
late the feasibility region.

The values of 4,and f, are chosen so that %r) changes rapidly between its max and
min values (4, /1, > 1). In the example 1,=0.95 and f=0.1 were used. Figure 3.b

shows the steady state behaviour. The algorithm doesn’t actually converge to a value.
Instead it oscillates between the two sides of the constraint border.

6 Conclusion

The problem of adaptive minimization of globally unknown functionals under con-
straints on the independent variable was addressed in a stochastic framework. The
CAM algorithm for vector problems was proposed. By resorting to the ODE analysis
for analysing stochastic algorithms and singular perturbation methods, it was shown
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Fig. 3. Adaptive optimum search for Example 3. ) The transient does not violate the feasibility
region. b) A detail of the algorithm steady state

that the only possible convergence points are the constrained local minima. A number
of simulation results in 2 dimensions were presented to illustrate this result. Modifica-
tions to the original algorithm were introduced to improve performance.
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Abstract. The Nearest Neighbor classifier is one of the most popular supervised
classification methods. It is very simple, intuitive and accurate in a great variety
of real-world applications. Despite its simplicity and effectiveness, practical use
of this rule has been historically limited due to its high storage requirements and
the computational costs involved, as well as the presence of outliers. In order to
overcome these drawbacks, it is possible to employ a suitable prototype selection
scheme, as a way of storage and computing time reduction and it usually provides
some increase in classification accuracy. Nevertheless, in some practical cases
prototype selection may even produce a degradation of the classifier effectiveness.
From an empirical point of view, it is still difficult to know a priori when this
method will provide an appropriate behavior. The present paper tries to predict
how appropriate a prototype selection algorithm will result when applied to a
particular problem, by characterizing data with a set of complexity measures.

1 Introduction

One of the most widely studied non-parametric classification approaches corresponds
to the k-Nearest Neighbor (k-NN) decision rule [3]. Given a set of n previously labeled
instances (training set, TS), the k-NN classifier consists of assigning an input sample to
the class most frequently represented among the k closest instances in the TS, according
to a certain dissimilarity measure. A particular case of this rule is when & = 1, in which
an input sample is assigned to the class indicated by its closest neighbor.

The asymptotic classification error of the £-NN rule (i.e., when n grows to infinity)
tends to the optimal Bayes error rate as k — oo and k/n — 0. Moreover, if k = 1, the
error is bounded by approximately twice the Bayes error [3]. The optimal behavior of
this rule in asymptotic classification performance along with a conceptual and imple-
mentational simplicity make it a powerful classification technique capable of dealing
with arbitrarily complex problems, provided that there is a large enough TS available.

Nevertheless, this theoretical requirement of large TS size is also the main problem
using the 1-NN rule because of the seeming necessity of a lot of memory and com-
putational resources. This is why numerous investigations have been concerned with
finding new approaches that are efficient with computations. Within this context, many
fast algorithms to search for the NN have been proposed. Alternatively, some proto-
type selection techniques [, 4, 6] have been directed to reduce the TS size by selecting
only the most relevant instances among all the available ones, or by generating new
prototypes in locations accurately defined.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 27-34, 2005.
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On the other hand, in many practical situations the theoretical accuracy can hardly
be achieved because of certain inherent weaknesses that significantly reduce the effec-
tive applicability of k-NN classifiers in real-world domains. For example, the perfor-
mance of these rules, as with any non-parametric classification approach, is extremely
sensitive to data complexity. In particular, class-overlapping, class-density, and incor-
rectness or imperfections in the TS can affect the behavior of these classifiers. Other
prototype selection methods [5, 10, 13, 14] have been devoted to improve the 1-NN
classification performance by eliminating outliers (i.e., noisy, atypical and mislabeled
instances) from the original TS, and by reducing the possible overlapping between re-
gions from different classes.

Despite the apparent benefits of most prototype selection algorithms, in some do-
mains these techniques might not achieve the expected results due to certain data char-
acteristics. For this reason, it seems interesting to know a priori the conditions under
which the application of a prototype selection scheme can become appropriate. A set
of data complexity measures [7, ¢] are used in this paper to predict when a prototype
selection technique leads to an improvement with respect to the plain 1-NN rule.

2 Data Complexity Measures

The behavior of classifiers is strongly dependent on data complexity. Usual theoretical
analysis consists of searching accuracy bounds, most of them supported by impractical
conditions. Meanwhile, empirical analysis is commonly based on weak comparisons of
classifier accuracies on a small number of unexplored data sets. Such studies usually
ignore the particular geometrical descriptions of class distributions to explain classifi-
cation results. Various recent papers [7, ¢] have introduced the use of measures to char-
acterize the data complexity and to relate such descriptions to classifier performance.

In [7, 8], authors define some complexity measures for two classes. For our pur-
poses, a generalization of such measures for the n-class problem is accomplished. The
ideal goal is to represent classification problems as points in a space defined by a num-
ber of measures, where clusters can be related to classification performances. Next para-
graphs describe the measures selected for the present study (the same short notation as
in the original paper [7] is here used).

Generalized Fisher’s Discriminant Ratio (F1). The plain version of this well-known
measure computes how separated are two classes according to a specific feature. It com-
pares the difference between class means with the sum of class variances. A possible
generalization for C' classes, which also considers all feature dimensions, can be stated
as follows:

c
Y iming-6(m,my)
dic Zj:l 5(55;'7 m;)
where n; denotes the number of samples in class 7, § is a metric, m is the overall mean,
m; is the mean of class ¢, and z; represents the sample j belonging to class i.

F1 (1)

Volume of Overlap Region (F2). The original measure computes, for each feature,
the length of the overlap range normalized by the length of the total range in which
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all values of both classes are distributed. The volume of the overlap region for two
classes is the product of normalized lengths of overlapping ranges for all features. Our
generalization sums this measure for all pairs of classes, that is,

Z H min{max(fx, ¢;), max(fi, ¢;)} — max{min(fx, ¢;), min(fx, c;)}
max{max(fx, ¢), max(fk,cj)} min{min(fx, ¢;), min(fx, ¢;)}
)
where (c;,c;) goes through all pair of classes, k takes feature index values, while
min( fx, ¢;) and max(fx,¢;) compute the minimum and maximum values of feature
fr in class ¢;, respectively.

(ci,ej) k

Feature Efficiency (F3). In [7], the feature efficiency is defined as the fraction of points
that can be separated by a particular feature. For a two-class problem, the original mea-
sure takes the maximum feature efficiency. This paper considers the points in the over-
lap range (instead of those separated points as in the original formulation). The measure
value for C classes is the overall fraction of points in some overlap range of any feature
for any pair of classes. Obviously, points in more than one range are counted once. This
measure does not take into account the joint contribution of features.

Non-parametric Separability of Classes (N2, N3). The first measure (N2) is the ratio
of the average distance to intraclass nearest neighbor and the average distance to in-
terclass nearest neighbor. It compares the intraclass dispersion with the interclass sep-
arability. Smaller values suggest more discriminant data. The second measure (N3) is
simply the estimated error rate of the 1-NN rule by the leaving-one-out scheme.

Density Measure (T2). This measure does not characterize the overlapping level, but
contributes to understand the behavior of some classification problems. It describes
the density of spatial distributions of samples by computing the average number of
instances per dimension.

3 Prototype Selection

Prototype Selection (PS) techniques have been proposed as a way of minimizing the
problems related to the k-NN classifier. They consist of selecting an appropriate re-
duced subset of instances and applying the 1-NN rule using only the selected examples.
Two different families of PS methods exist in the literature: editing and condensing
algorithms.

Editing [5, 10, 13—15] eliminates erroneous cases from the original set and “cleans”
possible overlapping between regions from different classes, what usually leads to sig-
nificant improvements in performance. Thus the focus of editing is not on reducing
the set size, but on defining a high quality TS by removing outliers. Nevertheless, as
a by-product these algorithms also obtain some decrease in size and consequently, a
reduction of the computational burden of the 1-NN classifier.

Wilson [14] introduced the first editing proposal. Briefly, this consists of using the
k-NN rule to estimate the class of each instance in the TS, and removing those whose
class label does not agree with that of the majority of its k£ neighbors. Note that this
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algorithm tries to eliminate mislabeled instances from the TS as well as close border
instances, smoothing the decision boundaries.

On the other hand, condensing [, 4, 6, 9, 11, 12] aims at selecting a sufficiently
small set of training instances that produces approximately the same performance than
the 1-NN rule using the whole TS. It is to be noted that many condensing schemes
make sense only when the classes are clustered and well-separated, which constitutes
the focus of the editing algorithms.

Hart’s algorithm [0] is the earliest attempt at minimizing the number of stored in-
stances by retaining only a consistent subset of the original TS. A consistent subset, say
S, of a set of instances, T', is some subset that correctly classifies every instance in T’
using the 1-NN rule. Although there are usually many consistent subsets, one generally
is interested in the minimal consistent subset (i.e., the subset with the minimum number
of instances) to minimize the cost of storage and computing time. Unfortunately, Hart’s
algorithm cannot guarantee that the resulting subset is minimal in size.

4 [Experimental Results and Discussion

As already stated in Sect. 1, in some cases PS algorithms may produce an effect different
from the one theoretically expected, that is, they may even degrade the performance of
the plain 1-NN classifier. A way of characterizing the problems could be by using the
data complexity measures introduced in Sect.2. Thus the experiments reported in this
paper aim at describing the databases in terms of such measures and analyzing the
conditions under which PS methods can perform better than the plain 1-NN rule.

In our experiments, we have included a total number of 17 data sets taken from
the UCI Machine Learning Database Repository (http://www.ics.uci.edu/
“mlearn) and from the ELENA European Project (http://www.dice.ucl.ac.
be/neural -nets/Research/Projects/ELENA/). The 5-fold cross-valid-
ation error estimate method has been employed for each database: 80% of the avail-
able instances have been used as the TS and the rest of instances for the test set. The
main characteristics of these data sets and their values for the complexity measures
previously described are summarized in Table 1.

For the PS methods, we have tested Wilson’s editing, Hart’s condensing, and the
combining edited and condensed set. In this latter case, we have firstly applied Wilson’s
editing to the original TS in order to remove mislabeled instances and smooth the deci-
sion boundaries, and then Hart’s algorithm has been used over the Wilson’s edited set to
further reduce the number of training examples. After preprocessing the TS by means
of some PS scheme, the 1-NN classifier has been applied to the test set.

Table 2 reports the error rate and the percentage of original training instances re-
tained by each method for each database. Typical settings for Wilson’s editing algorithm
(i.e., number of neighbors) have been tried and the ones leading to the best performance
have been finally included. The databases are sorted by the value of F1. By means of
the data complexity measures, we have tried different orderings which could give us an
indication of the relation between the complexity of a data set and the particular method
applied to it. From all those measures, it seems that F1 is the one that better discrimi-
nates between the cases in which an editing has to be firstly applied and those in which
one could directly employ the plain 1-NN rule.
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Table 1. Experimental data sets: characteristics and complexity measures.

Classes Dim Samples F1 F2 F3 N2 N3 T2

Cancer 2 9 683 1.315 0319 0902 0.220 0950 76
Clouds 2 2 5000 0.245 0.380 0.877 0.019 0.846 2500
Diabetes 2 8 768 0.032 0.252 0994 0.839 0.679 96
Gauss 2 2 5000 0.000 0.309 0.960 0.060 0.650 2500
German 2 24 1000 0.026 0.664 0992 0.794 0.664 42
Glass 6 9 214 0474 0.013 0963 0452 0.734 24
Heart 2 13 270 0.041 0.196 0985 0.838 0.567 21
Liver 2 6 345 0.017 0.073 0968 0.853 0.623 58
Phoneme 2 5 5404 0.082 0.271 0.878 0.067 0912 1081
Satimage 6 36 6435 2.060 0.000 0.883 0.215 0.909 179
Segment 7 19 2310 0.938 0.000 0.583 0.072 0967 122
Sonar 2 60 208 0.029 0.000 0.947 0.544 0.827 3
Texture 11 40 5500 3.614 0.000 0.726 0.119 0.992 138
Vehicle 4 18 846 0.259 0.169 0968 0.273 0.653 47
Vowel 11 10 528 0.536 0.482 0962 0.129 0.991 53
Waveform 3 21 4999 0.410 0.007 0.997 0.769 0.780 238
Wine 3 13 178 2362 0.000 0315 0.018 0.770 14

As can be seen in Table 2, Wilson’s editing outperforms the 1-NN rule when F1
is under 0.410 (that is, when regions from different classes are strongly overlapped).
Consequently, for a particular problem, one could decide to apply an editing to the
original TS or directly to employ the plain 1-NN classifier according to the value of
F1. For data sets with no (or weak) overlapping (in Table 2, those with F1 > 0.410),
the use of an editing can become even harmful in terms of error rate: it seems that
editing removes some instances that are defining the decision boundary and therefore,
this produces a certain change in the form of such a boundary. Another important result
in Table 2 refers to the percentage of training instances given by Hart’s condensing: in
general, the reductions in TS size for databases with high overlap are lower than those
in the case of data sets with weak overlapping.

From the results included in Table 2, it is possible to distinguish between two situa-
tions. First, for domains in which the classes are strongly overlapped, one has to employ
an editing algorithm in order to obtain a lower error rate (in these cases, benefits in size
reduction and classification time are also obtained). Second, for databases with weak
overlapping (i.e., F1 is high enough), in which error rate given by the 1-NN rule can
be even lower than that achieved with an editing, one should still decide when to ap-
ply a PS scheme (reducing time and storage needs) and when to directly use the 1-NN
classifier without any preprocessing. In many problems, differences in error rate are not
statistically significant (for example, in Satimage database, the error rates for Wilson’s
editing and 1-NN rule are 16.90% and 16.40%, respectively) and in such cases, savings
in memory requirements and classification times can become the key issues for deciding
which method to employ.
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Table 2. 1-NN error rate and percentage of training instances (in brackets), sorted by F1 (values
in italics indicate the lowest error rate for each database).

F1 Wilson Hart Combined 1-NN
Gauss 0.000 30.24 (68.93) 35.86 (54.07) 30.76 (8.08) 35.06 (100.00)
Liver 0.017 32.18 (66.59) 37.68 (59.13) 34.17 (17.46) 34.50 (100.00)
German 0.026 30.60 (68.10) 38.50 (53.45) 30.49 (10.73) 34.69 (100.00)
Sonar 0.029 43.03 (82.04) 50.40 (34.49) 40.42 (17.25) 47.89 (100.00)
Diabetes  0.032 27.21 (71.66) 35.29 (51.47) 27.34 (10.78) 32.68 (100.00)
Heart 0.041 32.61 (58.06) 42.14 (59.54) 35.20 (13.52) 41.83 (100.00)

Phoneme 0.082 26.43 (89.42) 34.07 (21.55) 28.17 (9.28) 29.74 (100.00)
Clouds 0.245 11.52 (88.06) 17.28 (27.25) 11.80 (4.07) 15.34 (100.00)
Vehicle 0.259 36.54 (64.15) 36.76 (53.43) 37.36 (18.65) 35.59 (100.00)
Waveform 0.410 1896 (82.01) 26.01 (38.96) 21.84 (17.09) 22.04 (100.00)
Glass 0474 3237 (70.69) 3135 (47.01) 32.74 (18.74) 28.60 (100.00)
Vowel 0.536 523 (96.69) 4.57 (23.40) 851 (21.96) 2.10 (100.00)
Segment 0938 528 (96.09) 5.88 (13.73) 6.88 (9.90) 3.72 (100.00)
Cancer 1.315 4.25 (95.54) 643 (11.44) 439 (3.00) 4.54 (100.00)
Satimage 2.060 1690 (91.24) 17.94 (18.96) 18.93 (7.23) 16.40 (100.00)
Wine 2362 29.57 (68.89) 27.59 (40.97) 28.60 (7.92) 26.95 (100.00)
Texture 3.614 122 (9897) 291 (8.01) 286 (6.86) 1.04 (100.00)

Fig. | illustrates the situation just described, comparing the error rate and the per-
centage of training instances for two databases with a high value of F1. For the Satim-
age database, differences in error rate are not statistically significant but, in terms of
percentage of training instances, the combined approach is clearly the best option: it
stores only 7.23% of the original samples and provides an error rate approximately 2%
higher than the plain 1-NN rule with the whole TS (100% of instances). Results for the
Wine database are similar to those of the Satimage domain, although now differences
in error rate are more important when comparing Wilson’s editing and 1-NN classifier.

100 100
Error rate ’ Error rate
[Z3 Percentage of training instances ’ - 80 [3 Percentage of training instances

] Y Y 1§
N N\ | \ : \ x
— §l N N \
Wilson Hart Combined I-NN Wilson Hart Combined 1-NN
(a) Satimage (b) Wine

Fig. 1. Comparing error rate and percentage of the original instances retained by each method for
several databases with high F1.
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As a conclusion, for these cases with high F1, one has to decide whether it is more
important to achieve the lowest error rate but without any reduction in storage or to
attain a moderate error rate with important savings in memory requirements (and also,
in classification times).

Despite F1 results in the complexity measure with the highest discrimination power
in the specific framework of PS, it is to be noted that other measures can become espe-
cially useful for other different tasks. For example, F2 and F3 (conveniently adapted)
could be particularly interesting in the case of feature selection because they could be
used as objective functions to pick subsets of relevant features. On the hand, other mea-
sures constitute a complement in the analysis of certain problems. In this sense, T2
can help to understand why the plain 1-NN classifier does not perform well in prob-
lems with weak overlapping. For example, the 1-NN error rate in Wine database, which
corresponds to a problem with almost no overlapping (F1 = 2.362), is high enough
(26.95%); this can be explained by the fact that there exists a very small number of
training instances per dimension (T2 = 14).

S Concluding Remarks and Further Extensions

The primary goal of this paper has been to analyze the relation between data complexity
and efficiency for the 1-NN classification. More specifically, we have investigated on the
utility of a set of complexity measures as a tool to predict whether or not the application
of some PS algorithm results appropriate in a particular problem.

After testing different data complexity measures, from the experiments carried out
over 17 databases, it seems that F1 can become especially useful to distinguish between
the situations in which a PS technique is clearly needed and those in which a more
extensive study has to be considered. While in the former case the PS approach achieves
the lowest error rate and some savings in memory storage, for the later it is not clear
the significance of gains in error rate and therefore, other measures should be employed
because even the application of a method with a higher error rate could be justified
according to other benefits in computational requirements.

It is worth noting that for those situations in which PS degrades the 1-NN accuracy,
one could still reduce the (high) computing time associated to the plain 1-NN rule by
means of fast search algorithms [2]. However, it is known that fast search algorithms
can lessen the number of computations during classification but they still maintain the
memory requirements.

Future work is mainly addressed to extend the data complexity measures employed
in the same framework of the present paper, trying to better characterize the conditions
for an appropriate use of PS techniques. A larger number of PS algorithms, both from
selection and abstraction perspectives, has also to be tested in order to understand the
relation between data complexity and performance of the 1-NN classifier. Finally, a
more exhaustive study will help to categorize the use of several complexity measures
for different pattern recognition tasks.
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Abstract. Two extensions of the original Wilson’s editing method are intro-
duced in this paper. These new algorithms are based on estimating probabilities
from the k-nearest neighbor patterns of an instance, in order to obtain more
compact edited sets while maintaining the classification rate. Several experi-
ments with synthetic and real data sets are carried out to illustrate the behavior
of the algorithms proposed here and compare their performance with that of
other traditional techniques.

1 Introduction

Among non-parametric statistical classifiers, the approaches based on neighborhood
criteria have some interesting properties with respect to other non-parametric meth-
ods. The most immediate advantage makes reference to their simplicity, that is, the
classification of a new pattern in the feature space is based on the local distribution of
patterns in the training set that surround the targeted point.

The Nearest Neighbor (NN) rule [1] is one of the most extensively studied algo-
rithms within the non-parametric classification techniques. Given a set of previously
labeled prototypes (a training set, TS), this rule assigns a sample to the same class as
the closest prototype in the set, according to a measure of similarity in the feature
space. Another extended algorithm is the k nearest neighbors rule (k-NN), in which a
new pattern is assigned to the class resulting from the majority voting of its k closest
neighbors. Obviously, the k-NN rule becomes the NN rule for k=1.

In order to achieve an appropriate convergence of the k-NN rule, it is well known
its asymptotic behavior with respect to the Bayes classifier for very large TS. On the
other hand, the larger the TS, the more computational cost is needed, becoming unaf-
fordable for large data sets.

Prototype Selection (PS) techniques for the k-NN rule are aimed at selecting proto-
types from the original TS to improve and simplify the application of the NN rule.
Within the PS techniques, we can differentiate two main approaches. A first category
of techniques try to eliminate from the TS prototypes erroneously labeled, commonly
outliers, and at the same time, to “clean” the possible overlapping between regions of
different classes. These techniques are referred in the literature to as Editing, and the
resulting classification rule is known as Edited NN rule [2].

A second group of PS techniques are aimed at selecting a certain subgroup of pro-
totypes that behaves, employing the 1-NN rule, in a similar way to the one obtained
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by using the totality of the TS. This group of techniques are the so called Condensing
algorithms and its corresponding Condensed NN rule [2].

The application of editing procedures are interesting not only as a tool to reduce
the classification error associated to NN rules, but also to carry out any later process
that could benefit from a TS with simpler decision borders and reduced presence of
outliers in the distributions [5], [7]. The Wilson’s editing algorithm [6] constitutes the
first formal proposal in these PS techniques, which is still widely used because of its
effectiveness and simplicity. The present paper presents a new classification rule
based on the distances from a sample to its k-nearest neighbor prototypes. Using this
likelihood rule, we present two modifications of Wilson’s editing.

2 Editing Algorithms

The common idea to most editing algorithms consists of discarding prototypes that
are placed in a local region corresponding to a class different from its [5]. As we will
see later, basically the only thing that varies among the various editing algorithms is
how they estimate the probability that a sample belongs to a certain class.

All the algorithms employed in this work are based on the k-NN classifier. Thus
the k-NN rule can be formally expressed as follows. Let {X, 0}={(x1,0;) , (x2,6,), ...,
(xx,8nv)} be a TS with N prototypes from M possible classes, and let P; = {P;; /i =
1,2,..., N; } be the set of prototypes from X belonging to class j. The neighborhood
Ni(x) of a sample x can be defined as the set of prototypes:

N cP; IN®| =k

M
Vpe Nix).ge P-N(x) = dp.x) <d(g. x): where P=|JP
i=1

If we now define a new distance between a point and a set of prototypes such as
di (x, P) =k~ | Ni(x) 0 P
then the k-NN classification rule can be defined as:

8, (0=0, & d(x,P)= min d, (x,P)

=120,

Wilson’s Editing

Wilson’s editing relies on the idea that, if a prototype is erroneously classified using
the k-NN, it has to be eliminated from the TS. Thus, all the prototypes in the TS are
used to determine the k nearest neighbors, except the one being considered, that is, it
uses the leaving-one-out error estimate. Thus, the Wilson’s editing algorithm [6] can
be expressed as follows:

Initialization: S <X

For each prototype x;€ X do
Search for the k-nearest neighbors of x; inside X — {x;}
If Sk-NN ()Cl‘) ES Gi then S « S — {X,'}.
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This algorithm provides a set of prototypes organized in relatively compact and
homogenous groups. However, for reduced data sets, it turns out incorrect considering
that the estimation made on each prototype is statistically independent, which is the
basis for a correct interpretation of the asymptotic behavior of the NN rule.

Holdout Editing

With the aim of avoiding such restrictions, a new editing algorithm was proposed
based on Wilson’s scheme, but changing the error estimate method. This algorithm,
called Holdout editing [2], consists of partitioning the TS in m not overlapped blocks,
making an estimation for each block j, using the block ((j+1) module m) to design the
sort key. This procedure allows to consider statistical independence, whenever m > 2.

Make a random partition of X in m blocs, Ty, ..., T,
Foreachblock T; G=1,...,m):
For each x;€ T,
Search for the k nearest neighbors of x; in Ty mod m)

If Sk-NN (x) #6; then X« X — {x;}

Multiedit

The scheme based on partitions allows the possibility of repeating the editing process
a certain number of times, say f[2]. In this case, the corresponding algorithm is called
Multiedit and consists of repeating the Holdout editing but using the 1-NN rule.

1. Initialization : t < 0
2. Repeat until in the last 7 iterations (¢ > f) do not take place any prototype
elimination from the set X.
2.1 Assign to S the result of applying Holdout editing on X using the
NN rule.
2.2 If no new elimination has taken place in 2.1, that is, ( | x| =|s| ),
then t < ¢+1 and go to step 2.
2.3 else, assign to X the content of S and make ¢ < 0.

For sufficiently large sets, the main advantage of the iterative version is that its be-
havior is significantly better because of the fact it does not have a dependency on
parameter k, opposite to the previous algorithm.

The behavior of the editing approaches based on partition gets worse as the size of
the TS decreases. This degradation of the effectiveness becomes more significant
when increasing the number of blocks by partition [3]. In fact, for relatively small
sets, Wilson’s editing works considerably better than the Multiedit algorithm.

3 Editing by Estimating Conditional Class Probabilities

For all methods described in previous section, the elimination rule in the editing proc-
ess is based on the k-NN rule. In the editing rules here proposed, the majority voting
scheme of the k-NN rule is substituted by an estimation of the probability of sample to
belong to a certain class.
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The rationale of this approach is aimed at using a classification rule based on local
information of an instance, like the k-NN, but considering the form of the underlying
probability distribution in the neighborhood of a point. In order to estimate the values
of the underlying distributions, we can use the distance between the sample and the
prototypes. Given a sample, the closer a prototype, the more likely this sample be-
longs to the same class as the one of such a prototype.

Therefore, let us define the probability P,(x) that a sample x belongs to a class i as:

k
4 1
P, =§ L
o P d )

where p/ denotes the probability that the k-nearest neighbor ¥’ belongs to class i. Ini-
tially, the values of p; for each prototype are set to 1 for its class label assigned in the
TS, and O otherwise. These values could change in case an iterative process is used,
but this is not the case in the approach we are presenting here.

The meaning of the above expression states that the probability that a sample x be-
longs to a class i is the weighted average of the probabilities that its k-nearest
neighbors belong to that class. The weight is inversely proportional to the distance
from the sample to the corresponding k-nearest neighbor. After normalizing,

M
Pi(x) =P, (x)1 Y P;(x)

j=1
the class i assigned to a sample x is estimated by the decision rule

O prob X) =05 i/ pi(x)= argmax(pj (%))
J

Using this rule, we propose the editing algorithms described below applying a Wil-
son’s scheme, that is, if the class assigned by the above decision rule does not coin-
cide with the class label of the sample, this sample will be discarded. As we will show
in the experiments, the use of the rule just introduced, instead of the k-NN rule, makes
the editing procedure to produce a TS with a good trade-off between TS size and
classification accuracy, because of the fact that such a decision rule estimates in a
more accurate way the values of the underlying probability distributions of the differ-
ent classes, estimating locally these values from the k-nearest neighbor samples.

Editing Algorithm Estimating Class Probabilities (WilsonProb)

1 Initialization: S <X
2 For each prototype x € X do
2.1 Search for the k nearest neighbors of x inside X—{x}
2.21f Sy prop (X) # 0, then S «— S — {x}, 6 denotes the class of the object x.

Editing Algorithm Estimating Class Probabilities and Threshold (WilsonTh)

A variation of the previous algorithm consists of introducing a threshold, O<u<l1 , in
the classification rule, with the aim of eliminating those instances whose probability



A Stochastic Approach to Wilson’s Editing Algorithm 39

to belong to the class assigned by the rule is not significant. Correspondingly, we are
removing samples from the TS that are in the decision borders, where the class condi-
tional probabilities overlap and are confusing, in order to obtain edited sets whose
instances have a high probability of belonging to the class assigned in the TS.

1 Initialization: S <X
2 For each prototype xe X do
2.1 Search for the k nearest neighbors of x inside X — {x}
221 Sprob (1) 0 or p; <, do S« S —{x}, p;is the maximum of all
the probabilities of the object x to belong to a class.

4 Experimental Results and Discussion
In this section, the behavior of the editing algorithms just introduced is analyzed using
14 real and synthetic databases taken from the UCI Machine Learning Database Re-

pository [4]. The main characteristics of these data sets are summarized in Table 1.

Table 1. A brief summary of the experimental databases

No. classes  No. features  No. instances

Cancer 2 9 683
Liver 2 6 345
Heart 2 13 270
Wine 3 13 178
Australian 2 42 690
Balance 3 4 625
Diabetes 2 8 786
German 2 24 1002
Glass 6 9 214
Ionosphere 2 34 352
Phoneme 2 5 5404
Satimage 6 36 6453
Texture 11 40 5500
Vehicle 4 18 846

The experiments consist of applying the 1-NN rule to each of the test sets, where
the training portion has been preprocessed by means of different editing techniques.
In particular, apart from the schemes here proposed, Wilson’s editing, the Holdout
method and the Multiedit algorithm have been also included in this comparative
study. The 5-fold cross-validation method (80% of the original instances have been
used as the TS and 20% for test purposes) has been here employed to estimate the
overall classification accuracy and size reduction rates.

Table 2 reports the experimental results (classification accuracy and size reduction)
yielded by the different algorithms over the 14 databases. These results have been
averaged over the five partitions. Bold figures indicate the bests methods in terms of
classification accuracy for each database. Italics indicates the highest size reduction.
Note that typical settings for the algorithms used in the present study have been tried
and the ones leading to the best performance have been finally included in Table 2. In
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the case of WilsonTh, we provide the results obtained from using different values of
the threshold parameter. The results corresponding to the plain NN classifier over the
original TS have been also included for comparison purposes.

Table 2. Classification accuracy (acc) and size reduction rate (size) using different editings

NN Wils. Hold. Mult. WProb WilsonTh
0.6 0.7 0.8
Cancer acc 9560 96.19  96.63 96.63 96.34 96.48 96.63 96.78
size 3.44 4.28 7.43 3.36 4.09 5.49 7.68
Liver acc 6579 70.70  70.40 59.49 68.67 68.97 69.55 68.95
size 3289  37.10 75.79 27.89 45.94 61.37 67.82
Glass acc 7140 67.62  66.03 58.63 66.16 63.97 62.29 62.31
size 28.50  46.14 61.21 36.68 20.32 50.58 58.17
Heart acc  58.16 67.00 67.34 66.64 66.26 65.17 65.12 64.78
size 3444 38770 69.25 28.51 40.09 53.61 65.09
Vehicle acc 6441 60.26  63.22 52.81 62.16 61.32 61.08 59.67
size 36.08  39.83 66.66 20.41 43.17 46.01 58.86
Wine acc  73.04 7090 75.24 72.42 69.69 69.74 69.20 69.20
size 3497  30.75 45.50 14.60 33.28 35.67 41.43
Ionosphere acc 8346 8202 8231 69.58 81.74 81.74 80.89 80.64
size 16.66 14.52 34.11 18.01 18.01 2421 25.21
Texture acc 9896 98.63  98.56 94.62 98.74 98.49 98.29 98.32
size 1.34 3.69 15.31 1.01 1.50 3.17 3.06
Balance acc 7920 85.11 85.62 86.41 84.96 86.73 88.50 89.13
size 14.80 14.52 37.04 10.76 24.40 32.08 38.40
Australian acc 65.67 69.27  70.72 68.99 69.56 69.70 68.39 68.54
size 31.88  36.88 59.52 25.90 37.02 50.76 57.53
German acc  64.81 7040  72.00 70.00 70.70 71.10 70.50 70.50
size 30.50  32.27 54.72 26.90 39.62 52.72 60.00
Phoneme acc 70.26  73.53 74.29 75.35 73.42 73.44 74.02 73.99
size 10.56 16.07 37.43 11.98 17.26 24.36 29.15
Satimage acc  83.62 8329 83.32 82.35 83.09 83.18 83.24 83.50
size 9.43 10.19 24.51 9.25 15.61 19.22 23.90
Diabetes acc  67.32 7370  73.69 71.09 74.35 74.60 74.48 74.74
size 26.36 4440 55.76 21.09 37.33 45.47 5491

The first significant result from this empirical analysis is that the editing algorithms
here proposed obtain similar classification accuracy to that of other classical methods.
It is especially remarkable the fact that no editing outperforms the plain NN classifier
in 6 out of 14 databases, although differences in such cases are not statistically sig-
nificant. Focusing on these results, it seems rather difficult to draw any conclusion
because of the little significant differences among them in terms of accuracy.

Examining the other factor of interest in Table 2, that is, the size reduction, the re-
sults show that both Multiedit and the proposed WilsonTh achieve the highest rates in
all cases, consequently giving the most important decrease in computational loads in
the classification phase. Although Multiedit achieves the highest set size reduction
rate almost in all databases (10 out of 14), differences with respect to WilsonTh are
only marginal. A final remark from the experiments, and perhaps the most important
one, refers to the fact of comparing both classification accuracy and reduction rate
simultaneously, WilsonTh outperforms Multiedit in most cases. In other words, the
proposed WilsonTh algorithm obtains a better trade-off between accuracy and reduc-
tion than that given by Multiedit (or any other editing).
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Fig. 1. Comparing classification accuracy and set size reduction for different editing methods
over the Liver database

In order to assess the performance relative to these two competing goals simulta-
neously, Fig. 1 illustrates the behaviour of the editing techniques in terms of both
classification accuracy and set size reduction over the Liver database. As can be ob-
served, Multiedit algorithm yields the highest reduction rate, but it produces a very
poor classification accuracy. On the contrary, Wilson’s editing obtains the highest
classification accuracy, but it retains too many training instances. Finally, WilsonTh
schemes (0.7 and 0.8) provide a suitable trade-off between both issues: high enough
classification accuracy and reduction rate.

5 Concluding Remarks

When using a NN classifier, the presence of mislabeled prototypes can strongly de-
grade the corresponding classification accuracy. Many models for identifying and
removing outliers have been devised. In this paper, we propose two editing algorithms
that consider the probabilities of an instance to belong to a class.

A series of experiments over 14 data sets has been carried out in order to evaluate
the performance of those new editing methods and compare them with other tradi-
tional techniques. From the experiments carried out, it is to be noted that the two
stochastic approaches to Wilson’s editing attain a suitable trade-off between TS size
and classification accuracy.

These editing methods are currently being applied in research works about ongoing
learning, where throughout these processes, it is necessary to eliminate erroneously
classified instances in the TS, with the objective of improving the classifier, acquiring
experience from new unlabeled samples to be incorporated in the TS.
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Abstract. A natural way to deal with training samples in imbalanced
class problems is to prune them removing redundant patterns, easy to
classify and probably over represented, and label noisy patterns that
belonging to one class are labelled as members of another. This allows
classifier construction to focus on borderline patterns, likely to be the
most informative ones. To appropriately define the above subsets, in this
work we will use as base classifiers the so—called parallel perceptrons, a
novel approach to committee machine training that allows, among other
things, to naturally define margins for hidden unit activations. We shall
use these margins to define the above pattern types and to iteratively
perform subsample selections in an initial training set that enhance clas-
sification accuracy and allow for a balanced classifier performance even
when class sizes are greatly different.

1 Introduction

Most real world classification problems involve imbalanced samples, that is, sam-
ples where the number of patterns from one class (that we term the positive
samples) is much smaller than that from others. There are many examples of
this situation [1, 5], as well as a large literature on this topic, for which many
techniques have been applied. Basic examples are ROC curves [3, 12] or the
alteration of the sample class distribution, either by oversampling the minority
class [2], undersampling the majority class [7] or doing this on both [3]. More-
over, sampling techniques are also in the core of the more sophisticated methods
that arise from the well known boosting paradigm [6].

In this work we shall propose a new procedure for training set reduction
based on the concept of margin that arises naturally in parallel perceptron (PP)
training introduced by Auer et al. in [l]. Parallel perceptrons have the same
structure of the well known committee machines [10], that is, they are made up
of an odd number of standard perceptrons P; with +1 outputs, and the ma-
chine’s one dimensional output is simply the sum of these perceptrons’ outputs
(that is, the overall perceptron vote count). They are thus well suited for 2—class
discrimination problems, but it is shown in [!] that they can also be used in
regression problems, as they have indeed a universal approximation property.
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Another contribution of [1] is to give a general and effective training procedure
for PPs. A key part of this training procedure is a margin based output sta-
bilization technique that tries to augment the distance of the activation of a
perceptron from its decision hyperplane, so that small random changes on an
input pattern do not cause its being assigned to another class. Although these
margins are not defined on the one dimensional output of a PP and they have
to be considered independently for each perceptron, they do provide a way to
measure the relevance of individual patterns with respect the overall training set
and to establish a pattern selection strategy.

We shall briefly describe in section 2 the training of PPs, as well as their
handling of margins, while in section 3 we will describe the overall training set
selection procedure and shall also see how margins can be used to discard both
redundant patterns, that is, those patterns easy to detect and well represented
by other patterns in the training set, and label noisy patterns, that is, those
labelled as belonging to one class while their features clearly establish them as a
member of another, while allowing to retain those patterns most interesting for
training purposes. In section 4 we will illustrate numerically the results provided
by the pattern selection algorithm over 7 example databases obtained fom the
UCI repository. As we shall see, in all of them we arrive at much smaller training
subsets that nevertheless allow the construction of effective PP classifiers. The
paper ends with a brief summary section.

2 Parallel Perceptron Training

The parallel perceptron architecture is simply that of the well known committee
machines. Let us briefly review it. Assume we are working with D dimensional
patterns X = (x1,...,2p)%, where the D—th entry has a fixed 1 value to include
bias effects. If the committee machine (CM) has H perceptrons, each with a
weight vector W, for a given input X, the output of perceptron i is then P;(X) =
s(W;-X) = s(act; (X)), where s(-) denotes the sign function and act;(X) = W;- X
is the activation of perceptron ¢ due to X. We then have

H
S OP(X) =#{i: Wi - X >0} — #{i : Wi - X <0}
= N4 (X) = N_(X) = N(X),

and the output h(X) of the CM is h(X) = s (N (X)) where we take H to be
odd to avoid ties. We will assume that each input X has an associated +1
label [x and take the output h(X) as correct if I[xh(X) > 0. It is then clear
that X has been correctly classified if either Ny (X) > N_(X) when Ix =1 or
N, (X) < N_(X) when Ix = —1. If this is not the case, and we have, say, [x = 1,
then N_(X) = (H — N(X))/2. Classical CM training ([10], ch. 6) then tries to
change the smallest number of perceptron outputs so that X could then be
correctly classified, and it is easy to see that this number is (1 + |N(X)])/2; this
last formula can also be applied to wrongly classified X such that [x = —1. Then,
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whenever [xh(X) = —1, classical CM training first selects those (1 + |N(X)])/2
perceptrons P; such that [x P;(X) = —1 and for which |act;(X)]| is smallest, and
changes their weights by the well known Rosenblatt’s rule:

W, =W, +nlx X. (1)

CMs and parallel perceptrons (PPs) differ in their training. PPs can be
trained either on line or, as we shall do here, in batch mode and for them the up-
date (1) is applied to all wrong perceptrons, i.e. those P; verifying [x P;(X) = —1.
Moreover, their training has a second ingredient, a margin—based output stabi-
lization procedure. Notice that if W; - X ~ 0, small changes on X may cause a
wrong class assignment for a small perturbation of X. To avoid this instability,
the update (1) is also applied when a pattern X is correctly classified but still
0< leCti(X) <.

The value of the margin ~ is also adjusted dynamically from a starting value.
More precisely, after a pattern X is processed correctly, we have

Yi=7+n (Mmin - min{Mmama M(X)}) )

where M (X) is the number of hyperplanes that process X correctly although
with a too small margin. In other words, M(X) = #{i : 0 < IxAct;(X) < v}
for those X such that Ix f(X) > 0. Values proposed in [1] for M, and M,a.
are My,in = 0.25 and M., = 1. Observe then that ~ increases if all correct
perceptron activations are above the current margin (for then M (X) = 0), while
it decreases if at least one perceptron activation is “below” the current margin
(then M(X) > 1). Notice that for the margin to be meaningful, weights have
to be normalized somehow; we will make its euclidean norm to be 1 after each
batch pass. Notice PPs provide a common margin value ~ for all H perceptrons;
however, not all patterns have to behave with respect to v in the same way
overall H perceptrons.

In spite of their very simple structure, PPs do have a universal approxima-
tion property. Moreover, as shown in [1], PPs provide results in classification and
regression problems quite close to those offered by procedures such as MLPs and
(4.5 decision trees. Finally, their training is very fast, because of the very simple
update (1) and because it is only applied to patterns incorrectly classified. De-
noting their number as Ny and omitting for simplicity updates due to margins,
the overall training complexity for a PP is O(Ny D H); as training advances, we
should have Ny < N and, hence, very fast bacth iterations.

3 Training Pattern Selection

When dealing with imbalanced data sets, it is reasonable to expect patterns to
fall within three cathegories, redundant, label noisy and borderline. Label noisy
are simply those X for which their label assignment is likely to be wrong. It is
thus desirable to exclude them from the training set. Redundant patterns are
those easy to classify. Since they are likely to be overrepresented on the training
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set, many of them can be possibly ignored during training without hampering
classifier construction. Finally, borderline patterns are those whose classification
could be different after small perturbations and therefore, classifier construction
should concentrate on them to provide stable and possibly correct classifications
after training ends.

This training pattern cathegorization can be potentially quite useful, for
once achieved, classifier construction can proceed by iteratively constructing a
sequence of classifiers using training sets where redundant and noisy patterns
are progressively removed. Notice that this training can be viewed as a kind of
radical boosting—like procedure, where redundant and noisy patterns probabil-
ities change to 0 after each iteration while the remaining patterns are taken as
equiprobable. The difficulty obviously lies on how to characterize patterns bel-
oging to each class. For this, activation margins are a natural choice. Recall that
PPs adaptatively adjust this margin, making it to converge to a final value ~. If
for a pattern X its i—th perceptron activation verifies |act;(X)| > 7, it is likely to
remain so after a small perturbation. Thus if for all ¢ we have Ixact;(X) > v, X
is likely to be also correctly classified later on. Those patterns are natural choices
to be taken as redundant. Similarly, if for all ¢ we have lxact;(X) < —v, X is
likely to remain wrongly classified, and we will take such patterns as label noisy.
The remanining X will be the borderline patterns. We shall use the notations
R;, N; and B; for the redundant, noisy and borderline training sets at itera-
tion ¢. With a slight abuse of the language, we shall call a pattern’s normalized
activation I xact;(X) its “margin”.

After iteration i we shall remove the R; and N; subsets. With respect to
B; the first option is to keep all of its patterns after each iteration. However,
working with imbalanced data sets we should treat positive and negative train-
ing patterns in different ways, specially if classes are mixed. The alternative
option we shall also use is to remove after each iteration the subset nB;” of
“noisy” borderline negative patterns X with a wrong margin Ixact;(X) < 0 in
all perceptrons. Although we could also do the same for the noisy borderline
positive set nBi+ , this has the risk of removing a sizeable amount of the positive
patterns, whose number could be much smaller than that of the negative ones.
This second alternative option certainly favors the positive class, so it has to be
balanced somehow. We shall do so with the termination criterium to be used.
Recall that we want a good classification performance on the positive class, but
maintaining also a good performance on the negative class. We thus need to
balance the positive and negative accuracies, defined as at = TP/(TP + FN)
and a- = TN/(TN + FP), where TP, TN denote the number of true posi-
tives and negatives, that is, positive and negative patterns correctly classified,
and FP,F'N denote the number of false positives and negatives, that is, nega-
tive and positive patterns incorrectly classified. For imbalanced problems, simple
accuracy, that is the percentage of correctly classified patterns, may not be a
relevant criterium, as it would be fulfilled by the simple (and very uninteresting)
procedure of assigning all patterns to the (possibly much larger) negative classes.
Other criteria are thus needed, and several options such as precision (the ratio
TP/(TP+FP)) or recall (the ratio TP/(T P+ FN), i.e., our positive class accu-
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Table 1. The table gives final g values when nB~ is kept (third column) and removed
(fourth); the second option gives better results. For comparison purposes g values
obtained after direct MLP are also given.

Problem set % positives final g with nB~ final g without nB~ MLP-BP

cancer 34.5 96.5 96.6 96.1
diabetes 34.9 68.7 71.2 71.7
ionosphere 35.9 77.6 82.3 80.8
vehicle 25.7 69.6 72.5 75.7
glass 13.6 91.2 91.6 91.8
vowel 9.1 92.9 93.3 97.1
thyroid 74 73.9 97.2 95.8

racy at), ROC curves, or other, have been proposed. Here we shall use a simple
measure first used in [11], the geometric ratio g = vata~ between positive and
negative accuracies, that measures the balance of the positive and negative class
accuracies.

After the iterations end, the final PP is then used over the test set to de-
termine the reported values of the overall test accuracy a:s and the test set g
value, that will measure how well balanced are the generalization abilities of the
just constructed classifier. The pseudocode of the general procedure including
noisy borderline patterns is thus:

trSetReduction(trainingSet tr, testSet ts)
gTr = 0;
acc+_Tr = 0;
trainPP(ts, g, acc+, W, gamma); // first update of weigths, margin
while g >= g_Tr and acc+ >= acc+_Tr: // reduce Tr while g, acc+ improve
gTr = g; acc+_Tr = acc+; wPP = W; // W_PP: weights of best PP so far

find(Tr, R, N, B, nB-, gamma); // find redundant, 1. noisy, borderline
remove(tr, R, N); // remove redundant, label noisy
remove (tr, nB-); // and negative noisy boderline

trainPP(tr, g, acc+, W, gamma);
calcAccG(ts, wPP, accTs, acc+_Ts, acc-_Ts, gTs);

In the next section we will illustrate numerically these procedures.

4 Numerical Results

We shall use 7 problem sets from the well known UCI database (listed in table 1)
referring to the UCIT database documentation [9] for more details on these prob-
lems. Some of them (glass, vowel, vehicle, thyroid) are multi—class problems; to
reduce them to 2—class problems, we are taking as the minority classes the class
1 in the vehicle dataset, the class 0 in the vowel data set, and the class 7 in the
glass domains (as done in [7]), and merged in a single class both sick thyroid
classes. In general they can be considered relatively hard problems. Moreover,
some of these problems provide well known examples of highly imbalanced posi-
tive and negative patterns, that difficult classifier construction, as discriminants
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Table 2. Comparison of initial and final g values. The table also shows the training
set reduction achieved.

Problem set initial g final g initial Tr set final Tr set ave. # iters

cancer 96.8  96.6 629 174 1.99
diabetes 69.9 T71.2 691 631 0.88
ionosphere 76.9 82.3 315 241 2.13
vehicle 67.0 725 762 284 2.89
glass 90.4 91.6 193 163 0.59
vowel 89.3 93.3 891 418 1.62
thyroid 68.1 97.2 6480 64 4.81

may tend to favor the (much) larger negative patterns over the less frequently
positive ones. This is the case of the glass, vowel, thyroid and, to a lower extent,
vehicle problems. In all of them we will take the minority class as the positive
one.

PP training has been carried out as a batch procedure. In all examples we
have used 3 perceptrons and parameters v = 0.05 and 1 = 10~2; for the thyroid
dataset, we have taken 7 = 1073. As proposed in [1], the 1 rate does not change
if the training error diminishes, but is decreased to 0.97 if it augments. Training
epochs have been 250 in all cases; thus the training error evolution has not been
taken into account to stop the training procedure. Anyway, it has an overall
decreasing behavior. In all cases we have used 10-times 10-fold cross validation.
That is, on each training stage, the overall data set has been randomly split in
10 subsets, 9 of which have been combined to obtain the initial training set, the
size of which has been decreased on each training iteration as described above.
To ensure an appropriate representation of positive pattern, stratified sampling
has been used. The final PPs’ behavior has been computed on the remaining,
unchanged subset, that we keep for testing purposes.

Recall that we have discussed two handling options for training patterns in
the set nB; , either to keep or remove them. Table 1 gives the average of the
final g values obtained over each test set. It also gives the proportion of positive
patterns and the final g values given by a standard multilayer perceptron for
comparison purposes. It can be seen that final g values arrived at removing
patterns in nB~ are consistently better. Moreover, they favourably compare
with MLP g values: although much simpler (and much faster to train), final
PP g values are slightly better than MLP values in two cases, slightly worse in
another two and essentially the same in the remaining three.

All other results will be given for training set selection when the nB; sets
are removed. They are contained in tables 2 and 3. The first table compares
initial and final g values. In all cases but the cancer data set, final test g values
are bigger than initial ones. The gain is small in some problems, that require
few training set selection iterations, but much larger in other cases; the average
number of iterations is nevertheless quite modest. For a quick comparison, we
just mention that the g values for the vehicle and vowel problems are better
than those in [7], where a different training set reduction method is used with
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Table 3. Initial and final accuracy results for training set selection when patterns in
nB~ are removed.

Problem set initial acc initial a® initial ¢~ final acc final a™ final a™

cancer 96.870  96.630  97.009 96.420 97.155 96.062
diabetes 75.039  57.926  84.369 75.158 61.373 82.665
ionosphere 82.143  64.051  92.367 86.171 71.803 94.255
vehicle 78.119  51.414  87.437 79.512 61.139 85.879
glass 95.048  84.500  96.795 95.842 86.000 97.459
vowel 97.273  80.667  98.933 97.838 88.111 98.811
thyroid 95.499  46.708  99.405 98.493 95.625 98.722

the 1-nearest neighbor (NN) and C4.5 algorithms; the glass g value reported
here is slightly smaller than that reported there for the 1-NN method but better
than that of C4.5 (notice that training sets used here may slightly differ from
those used in [7]). On the other hand, except in the glass and diabetes problems
training set reduction (shown in the same table) is quite marked, specially for
the thyroid data set.

Table 3 compares initial and final accuracy values. In all cases final accuracy
is bigger, except again for the cancer problem, where it remains essentially the
same. As it should be expected, the algorithm enforced gain on the accuracy
a™ of the positive training class extends to the test sets, that show a noticeable
increase, quite markedly in fact in all cases except the cancer dataset. On the
other hand, the accuracy a~ of the negative class slightly increases in two cases,
slightly decreases in another three and essentially stays the same in the remaining
two cases.

As a summary of these results, we have illustrated that the proposed itera-
tive training set selection procedure can achieve both noticeable improvements
on the classification of a smaller positive class, while offering a good balance be-
tween positive and negative classification performances. Moreover, considerable
reduction of training set sizes (and consequently a much faster training in the
final iterations) are to be added to these advantages.

5 Conclusions and Further Work

In this paper we have proposed a new procedure for training set reduction based
on the activation margins that arise naturally in parallel perceptron training. Its
effectiveness has been verified on the seven 2—class problems studied here, several
of them being representative of imbalanced class problems, where the discrimi-
nation of a small positive class may be damaged by the much larger number of
negative samples. The proposed procedure balances in a natural way the number
of positive and negative samples while ensuring a good generalization, not only
in terms of a good overall test set accuracy, but also of its adequate balance
among positive and negative classes.
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This property, together with the very fast training of PP, may make them

quite useful on large dimension imbalanced problems, an area of considerable
interest as many interesting problems (text mining, microarray discrimination)
belong to it. This and other questions, such as PP use in active training, and
improvements in their performance, either by combining PPs through boosting
or enlarging their parameter space, are under study.
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Abstract. In this work, we present a novel approach for face recogni-
tion which use boosted statistical local Gabor feature based classifiers.
Firstly, two Gabor parts, real part and imaginary part, are extracted for
each pixel of face images. The two parts are transformed into two kinds
of Gabor features, magnitude feature and phase feature. 40 magnitude
Gaborfaces and 40 phase Gaborfaces are generated for each face image
by convoluting face images with five scales and eight orientations Ga-
bor filters. Then these Gaborfaces are scanned with a sub-window from
which the quantified Gabor features histograms are extracted represent-
ing efficiently the face image. The multi-class problem of face recognition
is transformed into a two-class one of intra-and extra-class classification
using intra-personal and extra-personal images, as in [5]. The intra/extra
features are constructed based on these histograms of two different face
images with Chi square statistic as dissimilarity measure. A strong clas-
sifier is learned using boosting examples, similar to the way in face detec-
tion framework [10]. Experiments on FERET database show good results
comparable to the best one reported in literature [6].

1 Introduction

Face recognition has attracted much attention due to its potential values for
applications as well as theoretical challenges. As a typical pattern recognition
problem, face recognition has to deal with two main issues: (1) what features to
use to represent a face, and (2) how to classify a new face image based on the
chosen representation. Up until now, many representation approaches have been
introduced, including Principal Component Analysis (PCA) [9], Linear Discrim-
inant Analysis (LDA) [2], independent component analysis (ICA) [1], and Gabor
wavelet features [11]. PCA computes a reduced set of orthogonal basis vector
or eigenfaces of training face images. A new face image can be approximated
by weighted sum of these eigenfaces. LDA seeks to find a linear transforma-
tion by maximising the between-class variance and minimising the within-class
variance. ICA is a generalization of PCA, which is sensitive to the high-order
relationships among the image pixels. Gabor wavelet captures the local structure
corresponding to spatial frequency (scale), spatial localization, and orientation
selectivity. Among various representations, multi-scale and multi-orientation Ga-
bor features have attracted much attention and achieved great success in face
recognition [7, 11].

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 51-58, 2005.
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While regarding classification methods, nearest neighbor [9], convolutional
neural networks, nearest feature line, Bayesian classification [5] and AdaBoost
method have been widely used. The Bayesian Inra/Extraperson classifier (BIC)
[7] uses the Bayesian decision theory to divide the difference vectors between
pairs of face images into two classes: one representing intrapersonal differences
(i.e. differences in a pair of image representing the same person) and extraper-
sonal differences.

Adaboost method, introduced by Freund and Schapire [3], which provides a
simple yet effective stagewise learning approach for feature selection and nonlin-
ear classification at the same time, has achieved great success in face detection
[10] and other applications [7]. AdaBoost cascade framework, which is also widely
used in many applications especially in face detection occasions [10], is a divide-
and-conquer strategy, which can make training and testing process much easier
and faster. Moreover, it is an efficient way to treat asymmetric problems and
hardly converging training processes.

In this work, we present a novel approach for face recognition which use
boosted statistical Gabor feature based classifiers. First two Gabor parts, real
part and imaginary part, are extracted for each pixel of face images. The two
parts are transformed into two kinds of Gabor features, magnitude feature and
phase feature. 40 magnitude Gaborfaces and 40 phase Gaborfaces are generated
for each face image by convoluting face images with five scales and eight ori-
entations Gabor filters. Then these Gaborfaces are scanned with a sub-window
from which the quantified Gabor features histograms are extracted representing
efficiently the face image. The textures of the facial regions are locally encoded
by the Gabor feature patterns while the shape of the face is recovered by the
construction of the sub-window histogram. The idea behind using the local Ga-
bor statistical features is that the face image can be seen as composition of
micro-patterns which are invariant with respect to monotonic grey scale trans-
formations. Combining these micro-patterns, a robust global description of the
face image is obtained.

The multi-class problem of face recognition is transformed into a two-class
one of intra-and extra-class classification using intra-personal and extra-personal
images, as in [5]. The intra/extra features are constructed based on these his-
tograms of two different face images with Chi square statistic as dissimilarity
measure. A strong classifier is learned using boosting examples, similar to the
way in face detection framework [10]. Experiments on FERET database show
good results comparable to the best one reported in literature [0].

The rest of this paper is organized as follows: In section 2, the two kinds
of Gabor feature face representation approach is introduced. The intra/extra
features are constructed in section 3. In section 4, the cascade boosting learning
for weak classifiers selection and classifier construction are proposed. And the
experiment results using the FERET database and FERET evaluation protocol
and analysis are shown in section 5. In section 6, we present the conclusion and
future work.
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2 Gabor Features for Face Image Representation

The representation of faces using Gabor feature has been extensively and suc-
cessfully used in face recognition [/, |1]. Significant improvements in the face
recognition rate have been reported in literature. Gabor features exhibit desir-
able characteristics of spatial locality and orientation selectively, and are opti-
mally localized in the space and frequency domains. The Gabor kernels can be
defined as follows:

2 2 .2 o2

W, = ;; exp(— ;’;2 Vexp(ik, ,z) — exp(— ) )] (1)
where p and v define the orientation and scale of the Gabor kernels, z = (z,y)
and the wave vector k,, , is defined as follows:

Ky, = ke (2)

where k, = Emae/fYs kmae = 7/2, f = V2, ¢, = 2mp/8. The Gabor kernels in
equ.(1) are all self-similar since they can be generated from one filter, the mother
wavelet, by scaling and rotation via the wave vector k, ,. We use Gabor kernels
at five scales v € {0,1,2,3,4} and eight orientations p € {0,1,2,3,4,5,6,7},
with the parameter ¢ = 27 . The numbers of scales and directions selected made
the feature extracted suitable to represent the characteristics of spatial locality
and orientation selectivity as shown in Fig.1.

EENDNDEE
ESSNNzZZE

Fig. 1. 40 Gabor kernels used in this paper.

The Gaborfaces are computed by convoluting face images lixel we have two
Gabor parts, real part and imaginary part:
Gabor real part:

k2, kp,2* o2
Re(@) = 5 eap(= " leos(h, ) — eap(=7, )] 3)

Gabor imaginary part:

£2 2 .2
Im(¥y,,) = :é exp(— ;’ o )sin(ky,2) (4)
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3 Intra/Extra Features Construction

3.1 Features Construction

Two Gabor parts, real part and imaginary part, are extracted for each pixel of
face images. The two parts are transformed into two kinds of Gabor features,
magnitude feature and phase feature:

The magnitude features are generated by:

VR + Tm(W,,)? (5)

The phase features are calculated by:
arctan(Re(Im(¥, ,)/Re(¥, 1)) (6)
All feature values are quantified into 64 bins. 40 magnitude Gaborfaces and

40 phase Gaborfaces are generated for each face image by convoluting face image
with five scales and eight orientations Gabor filters, as shown in Fig.2.

Fig. 2. 80 Gaborfaces of one face image: 40 magnitude Gaborfaces and 40 phase Gabor-
faces.

Then these Gaborfaces (in this work, face image size is 92 x 112) are scanned
with a sub window which size is 20 x 20 by shifting two pixels at each step, from
which the quantified Gabor features histograms are extracted. With the sub win-
dow moving, spatially enhanced feature histograms represent the face image effi-
ciently. There are 1656 sub-windows for each Gaborface, and 132480(1656 x 80)
sub-windows for each face image. Each sub-window has one histogram to de-
scribe the local statistical property of Gabor feature. The multi-class problem
of face recognition is transformed into a two-class one of intra-and extra-class
classification. The basic idea is that intra-personal images have similar local
Gabor feature statistical property, in contrast, extra-personal images have dis-
similar local statistical property. In this work, Chi square statistic is applied to
two corresponding histograms of two face images to measure the similarity of
the two face images. That is to say, there are intra/extra 132480 features in the
statistical Gabor feature space for each pair of face images.
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3.2 Chi Square Statistic Distance

A histogram of the Gaborface f;(z,y) can be defined as:

Hj:ZI{fl(I,y):j}, Jj=0,...,n—-1 (7)

x,Y

in which n is the number of different labels produced by the Gabor filters (In
this work, Gabor coefficients are quantified into 64 bins, so n is 64) and

1, Aistrue
A} = {0, Ais false (8)

This histogram contains information about the distribution of the local micro-
patterns, such as edges, spots and flat areas, over the whole Gaborface. For ef-
ficient face representation, one should retain also spatial information. For this
purpose, the Gaborface is scanned with a sub-window and the spatially enhanced
histogram of each window, W;, is defined as:

Hiy = Y H(x,y) € W{fila,y) = } (9)

x,Y

In this histogram, we effectively have a description of the face on two different
levels of locality: the labels for the histogram contain information about the
patterns in pixel-level, and the labels are summed over a small region to produce
information on regional level.

Several possible dissimilarity measures have been proposed for histograms.
In this work, Chi square statistic is adopted.

-Chi square statistic (y?):

e =y B0 (10)

K3
When the image has been divided into regions, it can be expected that some
of the regions contain more useful information than others in terms of distin-
guishing between people. For examples, eyes seem to be an important cue in
human face recognition. To take advantage of this, AdaBoost is applied to select
intra/extra feature and set them with different weight based on the importance
of the information it contains.

4 Feature Selection and Classifier Learning

The set of 132480 intra/extra features is an over-complete set for the intrin-
sically low dimensional face appearance pattern and contains much redundant
information. We propose to use Adaboost to select most significant intra/extra
features from a large feature set.

Therefore, AdaBoost is adopted to solving the following three fundamental
problems in one boosting procedure: (1) learning effective features from a large
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0. (Input)
(1) Training examples {(z1,91),...,(xN,yn)},
where N = a + b; of which a examples have y; = 41
and b examples have y; = —1;
1. (Initialization)
Wo,; = 2111 for those examples with y; = +1 or
Wo,; = 2117 for those examples with y; = —1.
2. (Forward Inclusion)
Fort=1,...,T
(1) Train one hypothesis h; for each feature j with we, and
error ej = Pri’[h;(x:) # i
(2) Choose hi(z) = hi(x), such that Vj # k, e, < e;.
Let e; = ey.
(3) Update wi41,5 «— wt,lﬂfﬂ where I; = 1 or 0 for example
x; classified correctly or incorrectly respectively and
Bt = e:/(1 — et), normalize to Zz Wi, = 1;
3. (Output)
H(ZC) _ 1, Zf Zz;l atht(x) > Zz;l Qi
0, otherwose
where o = log ﬁlt

Fig. 3. AdaBoost Algorithm.

feature set, (2) constructing weak classifiers each of which is based on one of the
selected features, and (3) boosting the weak classifiers into a stronger classifier.

The AdaBoost algorithm based on the descriptions from [/, 8] is shown in
Fig. 3. The AdaBoost learning procedure is aimed to derive o and h¢(z). Every
training example is associated with a weight. During the learning process, the
weights are updated dynamically in such a way that more emphasis is placed on
hard examples which are erroneously classified previously.

5 Experiments

We tested the proposed method on the FERET fafb face database, and the
training set is also from the training set of the FERET database, which includes
1002 images of 429 subjects. All images are cropped to 112 pixels high by 92
pixels wide and rectified according to the eye positions provided with the FERET
data. Histogram normalization is used to preprocess all cropped images. The
cropped and preprocessed images are illustrated in Fig.4. 795 intra-personal
image pairs and 500,706 extra-personal image pairs are generated using the
training set.

To test the efficiency of our proposed method, several comparative exper-
iments were tested on the probe set fb with the gallery fa of the FERET
database. There are 1196 images in fa, 1195 images in fb, and all exactly the
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T st et 2

Fig. 4. Some examples of preprocessed face images.

subjects have exactly one image in both fa and fb. The rank curves of the final
recognition results are plotted in Fig.5. It should be noted that the CSU im-
plementations of the algorithms whose results we introcued here do not achieve
the same figures as in original FERET test due to some modifications in the
experimental setup. Our approach has achieved the upper bound recognition
performance shown in Fig.5.

Cumulative score

0.841 —— Proposed method H
EGBM
0.821 —— PCA MahCosine |
Bayesian MAP
08 . . :
0 5 10 15 20

Rank

Fig. 5. Rank curves for the fb probe sets.

6 Conclusion

In this work, we present a novel approach for face recognition which use boosted
statistical local Gabor feature based classifiers. The textures of the facial regions
are locally encoded by the Gabor feature patterns while the shape of the face
is recovered by the construction of the sub-window histogram. The idea behind
using the local Gabor statistical features is that the face image can be seen as
composition of micro-patterns which are invariant with respect to monotonic
grey scale transformations. Combining these micro-patterns, a robust global de-
scription of the face image is obtained. The multi-class problem of face recog-
nition is transformed into a two-class one of intra-and extra-class classification
using intra-personal and extra-personal images, as in [5]. The intra/extra fea-
tures are constructed based on these histograms of two different face images with
Chi square statistic as dissimilarity measure. A strong classifier is learned using
boosting examples. Experimental results on FERET(fa fb)database has proven
the effectiveness of our new approach. While the problem of how to select the
kernel size of Gabor filter and scanning sub-window size is still open. And this
will be the focus in our future research.
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Abstract. When a Multiple Classifier System is employed, one of the most
popular methods to accomplish the classifier fusion is the simple majority vot-
ing. However, when the performance of the ensemble members is not uniform,
the efficiency of this type of voting is affected negatively. In this paper, a com-
parison between simple and weighted voting (both dynamic and static) is pre-
sented. New weighting methods, mainly in the direction of the dynamic ap-
proach, are also introduced. Experimental results with several real-problem data
sets demonstrate the advantages of the weighting strategies over the simple vot-
ing scheme. When comparing the dynamic and the static approaches, results
show that the dynamic weighting is superior to the static strategy in terms of
classification accuracy.

1 Introduction

A multiple classifier system (MCS) is a set of individual classifiers whose decisions
are combined when classifying new patterns. There are many different reasons for
combining multiple classifiers to solve a given learning problem [6], [12]. First,
MCSs try to exploit the local different behavior of the individual classifiers to im-
prove the accuracy of the overall system. Second, in some cases MCS might not be
better than the single best classifier but can diminish or eliminate the risk of picking
an inadequate single classifier. Another reason for using MCS arises from the limited
representational capability of learning algorithms. It is possible that the classifier
space considered for the problem does not contain the optimal classifier.
LetD={D,, .., D, } be a set of classifiers. Each classifier assigns an input feature

vector X € R” to one of the ¢ problem classes. The output of a MCS is an A-
dimensional vector containing the decisions of each of the 4 individual classifiers:

[D(x),..., Dy(x)]" (1)

It is accepted that there are two main strategies in combining classifiers: selection
and fusion. In classifier selection, each individual classifier is supposed to be an ex-
pert in a part of the feature space and therefore, we select only one classifier to label
the input vector X. In classifier fusion, each component is supposed to have knowl-
edge of the whole feature space and correspondingly, all individual classifiers decide
the label of the input vector.

Focusing on the fusion strategy, the combination can be made in many different
ways. The simplest one employs the majority rule in a plain voting system [4]. More

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 59-66, 2005.
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elaborated schemes use weighted voting rules, in which each individual component is
associated with a different weight [5]. The final decision can be made by majority,
average [6], minority, medium [7], product of votes, or using some other more com-
plex methods [8], [9], [10], [19].

In the present work, some methods for weighting the individual components in a
MCS are proposed, and their effectiveness is empirically tested over real data sets.
Three of these methods correspond to the so-called dynamic weighting, by using the
distances to a pattern. The last method, which belongs to the static weighting strategy,
estimates the leaving-one-out error produced by each classifier in order to set the
weights of each component [21].

From now on, the rest of the paper is organized as follows. Sect. 2 provides a brief
review of the main issues related to classifier fusion and makes a very simple catego-
rization of weighting methods, distinguishing between dynamic and static weighting
of classifiers. Moreover, seveal weighting procedures are also introduced in Sect. 2.
The experimental results are discussed in Sect. 3. Finally, some conclusions and pos-
sible further extensions are given in Sect. 4.

2 Classifier Fusion

As pointed out in Sect. 1, classifier fusion assumes that all individual classifiers are
competitive, instead of complementary. For this reason, each component takes part in
the decision of classifying an input test pattern.

In the simple voting (by majority), the final decision is taken according to the
number of votes given by the individual classifiers to each one of the classes, thus
assigning the test pattern to the class that has obtained a majority of votes. When
working with data sets that contain more than two classes, in the final decision ties
among some classes are very frequently obtained. To solve this problem, several cri-
teria can be considered. For instance, to randomly take the decision, or to implement
an additional classifier whose ultimate goal is to bias the decision toward a certain
class [15].

An important issue that has strongly called the attention of many researchers is the
error rate associated to the simple voting method and to the individual components of
a MCS. Hansen and Salomon [17] show that if each one of the classifiers being com-
bined has an error rate less than 50%, it may be expected that the accuracy of the
ensemble improve when more components are added to the system. However, this
assumption not always is fulfilled. In this context, Matan [18] asserts that in some
cases, the simple voting might perform even worse than any of the members of the
MCS. Thus some weighting method can be employed in order to partially overcome
these difficulties.

A weighted voting method has the potential to make the MCS more robust to the
choice of the number of individual classifiers. Two general approaches to weighting
can be remarked: dynamic weighting and static weighting of classifiers. In the dy-
namic strategy, the weights assigned to the individual classifiers can change for each
test pattern. On the contrary, in the static weighting, the weights are computed for
each classifier in the training phase, and they are maintained constant during the clas-
sification of the test patterns.
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In the following sections, several weighting functions, both from the dynamic and
the static categories, are explored. It has to be noted that in the present work, all the
individual classifiers correspond to the 1-NN (Nearest Neighbor) rule [16]. This is a
well-known supervised non-parametric classifier that combines conceptual and im-
plementational simplicity with an asymptotic error rate conveniently bounded in
terms of the optimal Bayes error. In its classical manifestation, given a set of m previ-
ously labeled instances (or training set, TS), this classifier assigns any input test pat-
tern to the class indicated by the label of the closest example in the TS. The extension
of this rule corresponds to the k-NN classifier, which consists of assigning an input
pattern to the class most frequently represented among the k closest training instances.

2.1 Dudani’s Dynamic Weighting

A weighted k-NN rule for classifying new patterns was first proposed by Dudani [3].
The votes of the k nearest neighbors are weighted by a function of their distance to the
test pattern. In his original proposal, a neighbor with smaller distance is weighted
more heavily than one with a greater distance: the nearest neighbor gets a weight of 1,
the furthest neighbor a weight of 0, and the other weights are scaled linearly to the
interval in between (Eq. 2):

d.—d,
Lif d, #d,
w, = d —d, )

1 otherwise

where d; denotes the distance of the j’th nearest neighbor to the test pattern, d; is the
distance of the nearest neighbor, and d; indicates the distance of the furthest (k’th)
neighbor.

Now, this function will be here applied to make the dynamic weighting of the indi-
vidual components in an ensemble. Correspondingly, the value of & (that is, the num-
ber of nearest neighbors in Dudani’s rule) will be replaced by the number of classifi-
ers h that constitute the MCS. The procedure to assign the weights can be described as
follows:

1. Let dj(j = 1, .., h) be the distance of an input test vec-

tor X to its nearest neighbor in the j’th individual classi-

fier.
v, d .

2. Sort the h distances in increasing order: d, X
3. Weight classifier D, by means of function in Eg. 2.

2.2 Dynamic Weighting by Index

Another weighting function is here considered. Like in Dudani’s method, the & dis-
tances of the test pattern x to its nearest neighbor in each individual classifier have
also to be sorted. In this case, each classifier D; is weighted according to the following
function:

w; = h—j+1 3)
where j represents the index of an individual classifier after sorting the corresponding
h distances.
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Consider a MCS consisting of three individual classifiers D = {D;, D,, D3}. The
distance of the nearest neighbor to a given test pattern x by means of each classifier is
dy, d,, and d;, respectively. Now suppose that d, < d; < d3. Thus after sorting the three
distances, the index of classifier D, is 2, the index of D, is 1, and the index of Djs is 3.
Consequently, by applying the weighting function in Eq. 3, the resulting weights are
wi=3-2+1=2wy=3-1+1=3,andw;=3-3+1=1.

2.3 Dynamic Weighting by Averaged Distances

We here propose a novel weighting function, which is based on the computation of
averaged distances. In summary, the aim of this new dynamic weighting procedure is
to reward (by assigning the highest weight) the individual classifier with the nearest
neighbor to the input test pattern. The rationale behind this is that such a classifier
probably corresponds to that with the highest accuracy in the classification of the
given test pattern. Thus each classifier D; will be weighted by means of the function

shown in Eq. 4:
h
S

= O

J d )

J
Note that, by using this weighting function, we effectively accomplish the goal
previously stated, that is, the individual classifier with the smallest distance will get
the highest weight, while the one with the greatest distance will obtain the lowest

weight.

2.4 Static Weighting by Leaving-One-Out Error Estimate

While the previous methods weight the individual components of a MCS in a dy-
namic manner, the last proposal corresponds to the static category. In this sense,
weighting will be here performed in the training phase by means of the leaving-one-
out error estimate method. To this end, for each individual classifier Dj, the following
function ¢; is defined:

1
¢ =—2,e(3) 5)

xes

where m denotes the number of patterns in a training sample S, x represents a training
instance, y is the nearest neighbor of x in § — {x}, and e(y, x) is defined as follows:

if L(y)=L
e(y’x):{o if L(y)=L(x) ©

1 otherwise

where L(x) is the class label of a pattern x, and L(y) indicates the class label of a pat-
tern y.

By using the error function just introduced, each individual classifier D; will be
weighted according to the function in Eq. 7:
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(7

Note that this weight is directly related to the amount of errors produced by each
individual classifier. Thus the classifier with the smallest error will be assigned the
highest weight, while the one with the greatest error will obtain the lowest weight.

3 Experimental Results

The results here reported correspond to the experiments over six real data sets taken
from the UCI Machine Learning Database Repository [11]. For each data set, the 5-
fold cross-validation error estimate method was employed: 80% of the available pat-
terns were for training purposes and 20% for the test set.

The integration of the MCS was performed by manipulating the patterns [12] for
each of the classes, thus obtaining three different individual classifiers with four vari-
ants:

Sequential selection [1], [2] (Sell)

- Random selection with no replacement [1], [2] (Sel2)
- Selection with Bagging [13] (Sel3)

- Selection with Boosting [14] (Sel4)

The experimental results given in Table 1 correspond to the averages of the general
accuracy in the fusion, by technique of pattern selection and method of weighting.
The 1-NN classification accuracy for each entire original TS (i.e., with no combina-
tion) has also been included as the baseline classifier. Analogously, the results for the
MCS with simple voting (no weighting) are reported for comparison purposes.

From results in Table 1, some preliminary conclusions can be drawn. First, for all
data sets there exists at least one classifier fusion technique whose classification accu-
racy is higher than that obtained when using the whole TS (i.e., with no combination).
Second, comparing the four selection methods, in general Sell and Sel4 clearly out-
perform the other two selection approaches (namely, random with no replacement and
bagging), independent of the voting scheme adopted. On the other hand, focusing on
sequential selection (Sell) and boosting (Sel4), the accuracy of Sell results superior
to that of Sel4 in most cases (22 out of 30).

If we now compare the simple and the weighted voting schemes, we can observe
that in all data sets, we can find a weighting technique with better results than those of
the simple majority voting. The Dudani’s weighting outperforms all the other meth-
ods in Liver database. The weighting by index is the best in Cancer and Glass do-
mains. The weighting by averaged distances achieves the highest accuracy in Heart,
Pima and Vehicle databases.

Finally, with respect to differences in accuracy between dynamic and static weight-
ing, it has to be especially remarked the fact that results of the static strategy are al-
ways inferior to those of the dynamic approach. As can be seen, although differences
are not significant, the static weighting does not seem to present any advantage with
respect to the dynamic weightings.
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Table 1. Averaged accuracy of different classifier fusion methods. Values in italics indicate the
best selection method for each voting scheme and each data set. Boldface is used to emphasize
the highest accuracy for each problem

Cancer  Heart Liver Pima Glass  Vehicle
Original TS 95.62 58.15 65.22 65.88 70.00 64.24
Simple voting

Sell 96.93 65.19 6377 6889  68.00 6448
Sel2 66.42 50.37 57.10  59.35 56.50  62.10
Sel3 72.12  45.19 50.14  60.00  60.50  60.55
Sel4 94.16 57.78 62.03 70.07  62.50  60.43
Dudani’s weighting

Sell 95.62 58.15 65.51 68.37  70.00  64.24
Sel2 68.47 5296  56.23 59.08 67.00  61.02
Sel3 74.16 4741 52.17 6026  65.00 60091
Sel4 95.89  58.52 60.87 67.58 66.50  64.24
Weighting by index

Sell 9591 61.11 62.61 68.24 71.00  64.48
Sel2 65.84  54.07 53.04 6209 6200 6234
Sel3 72.41 4778  49.28 6092  61.50  60.79
Sel4 99.27 5741 59.42 70.07  66.00  62.81
Weighting by averaged distances

Sell 96.50  65.56  65.22 68.37 68.00  64.72
Sel2 62.04  49.63 57.10  59.08 59.00  59.00
Sel3 70.80  45.93 50.14 6026 6250  63.41
Sel4 93.58 57.78 62.32 70.85  63.00  61.50
Static weighting

Sell 96.93 65.19 6377 6889 6850  63.65
Sel2 66.42 50.37 57.10  59.35 56.00  62.93
Sel3 7212 45.19 50.14  60.00  60.50  59.84
Sel4 94.16 59.63 62.03 70.07  63.00  61.03

4 Conclusions and Future Work

In a MCS, performance mainly depends on the accuracy of the individual classifiers
and on the specific way of combining the individual decisions. Correspondingly, it
results crucial to appropriately handle the combination of decisions in order to attain
the most accurate system. In the present work, several weighting methods, both from
the dynamic and static approaches, have been introduced and empirically compared
with the simple majority voting scheme.

From the experiments carried out, our study shows that the weighting voting
clearly outperforms the simple voting procedure, which erroneously assumes the
uniform performance of the individual components of a MCS. Another issue to re-
mark is that the dynamic weighting is superior to the static strategy, in terms of classi-
fication accuracy.

At this moment, it has to be admitted that it results difficult enough to propose one
of the dynamic weightings as the best method. In fact, differences among them are
more or less significant depending on each particular database. Nevertheless, one can
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see that the weighting by averaged distances achieves the highest accuracy in 3 out of
6 problems (50% of the cases), while the weighting by index in 2 out of 6 databases
(33% of the cases).

Future work is primarily addressed to investigate other weighting functions applied
to classifier fusion. For instance, the inverse distance function proposed by Shepard
[20] could represent a good alternative to other weighted voting schemes with low
classification accuracy. On the other hand, the results reported in this paper should be
viewed as a first step towards a more complete understanding of the behavior of the
weighted voting procedures and consequently, it is still necessary to perform a more
extensive analysis of the dynamic and static weighting strategies over a larger number
of synthetic and real problems.
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Abstract. Kernel-based regularization discriminant analysis (KRDA)
is one of the promising approaches for solving small sample size problem
in face recognition. This paper addresses the problem in regularization
parameter reduction in KRDA. From computational complexity point of
view, our goal is to develop a KRDA algorithm with minimum number of
parameters, in which regularization process can be fully controlled. Along
this line, we have developed a Kernel 1-parameter RDA (K1PRDA) al-
gorithm (W. S. Chen, P C Yuen, J Huang and D. Q. Dai, “Kernel
machine-based one-parameter regularized Fisher discriminant method
for face recognition,” IEEE Transactions on SMC-B, to appear, 2005.).
K1PRDA was developed based on a three-parameter regularization for-
mula. In this paper, we propose another approach to formulate the one-
parameter KRDA (1PRKFD) based on a two-parameter formula. Yale
B database, with pose and illumination variations, is used to compare
the performance of IPRKFD algorithm, KIPRDA algorithm and other
LDA-based algorithms. Experimental results show that both 1IPRKFD
and K1PRDA algorithms outperform the other LDA-based face recogni-
tion algorithms. The performance between 1IPRKFD and K1IPRDA algo-
rithms are comparable. This concludes that our methodology in deriving
the one-parameter KRDA is stable.

1 Introduction

Among various appearance-based techniques, linear discriminant analysis-based
(LDA) method is one of the promising approaches in face recognition. The first
well-known LDA-based face recognition algorithm is so-called Fisherface [1] de-
veloped in 1997. However, LDA has two major drawbacks for its application
to Pattern Recognition (PR). First, the distributions of face image variations
under different pose and illumination is complex and nonlinear. Therefore, like
other appearance-based methods, the performance of LDA-based method will
degrade under pose and illumination variations. To overcome this drawback,

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 67-74, 2005.
© Springer-Verlag Berlin Heidelberg 2005



68 Wensheng Chen et al.

kernel method is employed. The basic idea is to apply a nonlinear mapping
®: 2 € R — &(x) € F to the input data vector z in input space R? and
then to perform the LDA on the mapped feature space F. This method is so-
called Kernel Fisher Discriminant (KFD) [2]. Secondly, many LDA-based algo-
rithms usually suffer from small sample size (S3) problem. Some algorithms,
such as Fisherface [1], Direct LDA [3] and RDA [1, (] etc, are developed to
solve S3 problem. However, Fisherface and Direct LDA are implemented in the
sub-feature-space, not in the full feature space. So it may lost some useful dis-
criminant information in projection to a subspace. Dai et al. [1] proposed three
parameters regularized method to solve S3 problem. Although this method is
executed in the full sample space, it’s very difficulty to determine three optimal
parameters. We have proposed reducing to three parameters to one parameter
and developed a Kernal 1-parameter RDA (K1PRDA) method [6]. The results
are encouraging. In this paper, we propose and develop another 1-parameter
RKFD (1PKFD)algorithm. However, the starting point is not a 3-parameter
formulation, but a 2-parameter formulation [5]. The optimal parameters (6,t)
are determined simultaneously by using techniques proposed in [0].

2 Proposed Method

This paper proposes and develops another one parameter regularization KFD
method for face recognition. Details are discussed as follows.

2.1 Some Definitions

Assume the dimensionality of original sample feature space be d and the number
of sample classes be C, the total original sample X = {X1, Xy, -, X¢}, the jth
class X; contains N; samples, namely X; = {a1,23, -2y}, j = 1,2,---,C.
Let N be the total number of original training samples, so N = ch:l Nj. Let
nonlinear mapping @ : x € RY — &(x) € F, where F is the mapped feature
space, denote df=dim F. Let m; = ]\1, Zzexj &(x) be the mean of the mapped
sample class ¢(X;) and m = ch:l >_zex, P(x) be the global mean of the
total mapped sample ¢(X). The matrices SZ, S are defined respectively as:

C
St= 30 @) —my) () —my)", S

j=lzeX;
1 C

= v 2 Ni(mj —m)(m; —m)"
j=1

The Fisher index Jg(w) in F is defined as

wt SPw
Jo(w) = wTSzbw’ we F. (1)
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2.2 Kernel Fisher Discriminant Analysis (KFDA)

According to Mercer kernel function theory [7], any solution w € F must belong
to the span of all training patterns in F'. Hence there exists a group of constants
{wl 11<i<ci<k<n, such that w = Zlczl Ekj\ll Wt d(xt). If substituting w into
(1), it yields that the Fisher criterion function in the mapped feature space F
can be written as followings:

0T Pp

Jo(d) = T Qa0

(2)
where w = (’li)é)lglgc)lngNl € RN,

LDA is to solve the problem @* = argmaxgep Jo (W), which is equivalent to
solving eigenvalue problem (Qg4 1P¢)W = WA, where A is a diagonal eigenvalue
matrix with its diagonal elements in decreasing order and W is an eigenvector
matrix. However the matrix Q¢ is always singular when S3 problem occurs. In
this case, the traditional LDA method can not be used directly.

2.3 Two Parameters Regularization of Qg

If all eigenvalues of Q¢ are non-zero, the classical LDA method can be applied
directly. In case of S3 problem occurs, LDA method can not be used since Q4
is singular. In designing the regularized matrix Q% for the singular matrix Qg,
the criteria as suggested by Krzanowski etc [3] are used in this paper.

Assume Q¢ = UQAQUg is the eigenvalue decomposition of matrix QQ¢. Based
on the results in [1], we define the two-parameter family regularization Qgﬁ for
Q¢ as Qgﬁ = UQ/iQ UZL, where /iQ is a diagonal matrix with its diagonal elements
&(i=1,2,...d) given by,

_ ()\i+CY)/M,7;:1,2,"~77’
51_{67 Z:T+175N (3)

where M is a normalization constant and is given by

tr(Qs) + T
tr(Qs) — (N —7)3’

where @ > 0,8 > 0 and (& + a)/M — 3 > 0. It is easily verified that the
regularized matrix Qgﬁ satisfies all the criteria listed in [3].

M= (4)

2.4 Formulating One Parameter Regularization

In this section, we derive the one parameter formulation from the above defined
two parameters regularization. -

Denote G=diag(I,,0) € RN*N G =In—G,a=w"Qpw, b= wTUQGUgw,
c= wTUQ(_?Ugw, e = b+c = wlw. Then the regularized Fisher index Jgﬁ (w) =

'wTP(pw

2w w e RN can be written as
wTQZ w
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Jaﬁ( ) (tT(Qé) + TCY) ’LUTPQU}
(tr(Qa) — (N = 7)) (a + ba) + ¢ (tr(Qa) + 7o)

Two optimal parameters a3 can be determined by solving equations V,.Jg s (w)
= 0, where V is a gradient operator, as follows,
tr(Qs)c — (N —T)a

o= and 3 =

tr(Qge)
bN —er '

N -1

On the other hand, we hope that above two parameters «, 3 can be reduced to
one parameter t and when ¢ tends to zero, the regularized matrix tends to the
original matrix, i.e., a(t) — 0 and §(t) — 0 as t — 0. So we slightly modify the
above formula as

tr(Qs)c— (N —T)a
bN — et

tr(Qas)

at) = -tandﬁ(t):N_T-t, 0<t<1) (5)

2.5 The Proposed 1IPRKFD Algorithm

Based on results in sections 2.2 to 2.4, we develop one parameter regularized ker-
nel Fisher discriminant (1IPRKFD) algorithm for face recognition in this section.
Details of the algorithm are designed as follows.

Step 1: Give initial value © = (6,t) and w € R", calculate matrices Qg, Pp.
Step 2: Do eigenvalue decomposition Qg = UQAQUS , where

Ag = diag(A\1,- -, Ar,0,-+,0) € RNV A; > A > o>\, > 0.

Step 3: Calculate «, 3 defined in (5) and &; (i = 1,2,---, N) defined in (3).

Step 4: Let Y = Ay ?UL, Py = YPsYT, where Aq = diag(ér, -+, En),
then do eigenvalue decon}posmon Pp = VApVT, where Ap is a diago-
nal eigenvalue matrix of Py with its diagonal elements in decreasing order
and V is an eigenvector matrix. Rewrite V = (vq,---,vc-1,--,vn) and let
Vo1 = (vi,v2, -, vc-1)-

Step 5: Calculate matrix Ax1prpa = UQ/iél/QVc_l. Rewrite Ax1prDA =
[’d)l,’d)g,' 11)01] where ﬁ)J = (wé‘khSISQ 1<k<N; € RN,l <j<C-1,and
let w; = Zl 1Ek 1ka @(z%). Therefore the optimal projection matrix
W = [w,wa, -, wo—1].

2.6 Determine the Optimal Parameters

In this section, the conjugate gradient method (CGM) will be exploited to de-
termine the optimal parameters. The detail CGM algorithm is given as follows.
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1. Give initial value ©1 = (61,t1) and wg € RY, calculate matrices Qg), qul),
via proposed 1PRKFD algorithm to get ws.
Compute searching direction: S; = V.J(O1,w;), let $; = S/ |51
3. Fork>1, Opi1 = Ok + pi - Sy, where S), = St/ ||Sk||, where
Sy = VJ(@k,wk) 4+ vg_1 - Sk_1 and

o

Vi1 = VIO, wi)I* / VT (O, wi—) |

4. Calculate matrices Q;kJrl),qukH), via IPRKFD algorithm to obtain wg.1.
If J(Okt1,wrt1) < J(Op,wy) then go to step 3 to search the next points.

5. The CGM iterative procedure of conjugate gradient method will terminate
while t < 0 or ({; + a)/M — 3 < 0.

3 Experimental Results

To evaluate the proposed method, an in-depth investigation of the influence
on performance of pose and illumination variations is performed using YaleB
database. we select Gaussian RBF kernel as K () = exp(—270% |z — y||*).

The YaleB database contains 5850 source images of 10 subjects each seen
under 585 viewing conditions (9 poses x 65 illumination conditions). In our ex-
periments, we use images under 45 illumination conditions and these images has
been divided into four subsets according to the angle the light source direction
makes with the camera axis [9].

3.1 Fixed Pose with Illumination Variations

In this part, we will investigate the influence of illumination variations upon
performance of LDA-based face recognition algorithm. Results of fixing the pose
and testing the illumination variations are shown in figure la-1b.

For each pose, we randomly select 2 images from each subset for training
(2x4=8 images for training per individual), and all the other images from the
4 subsets are selected for testing (37 images for testing per individual). The
experiments are repeated 10 times and the average accuracies of rank 1 are
recorded and shown in the figure 1a. The mean accuracies of rank 1 to rank 3 of
all poses are shown in figure 1b. In the CGM iterative procedure, the initial values
of parameters are given as: t = 0.005, § = 0.045, the step length p = 0.000125
and wy = ones(N,1) € RY.

From the results shown in Figure 1a, we can see that, (i) the proposed method
gives comparable results with KIPRFD [6] and (ii) the performance of our
method outperforms than other four methods under all illumination variations
except that Kernel Direct LDA is slightly better than our method in pose 3.

From the results shown in Figure 1b, it can been seen that the recognition
accuracy of our method increases from 88.92% (rankl) to 94.49%(rank3). The
recognition accuracies of Eigenface [10], Fisherface [1], direct LDA [3], Kernel
direct LDA [11] and K1IPRFD [0] are increase from 58.98%, 70.42%, 80.39%,
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Fig. 1. For each pose, randomly select 2 images from each subset for training, and all
the other images from the 4 subsets are selected for testing.

84.86% and 88.37% (rankl) to 79.43%, 88.2%, 90.63%, 94.11% and 94.17%
(rank3) respectively. The results show that the proposed method outperforms
than other five methods as well.

3.2 Both Pose and Illumination Variations

Finally, we will make the training samples include pose and illumination vari-
ations. The initial values of parameters are given as: t = 0.005, § = 0.045, the
step length p = 0.00125 and wy = ones(N,1) € RY. The experimental setting
are as follows.

For each pose, we will select 2 images from each illumination subset of 4
subsets in all. This is to say that we will randomly select 720 images (10 persons
x 9 poses X 4 subsets x 2 images) for training. Then the rest images, say 3330
images (10 persons X 9 poses x 37 images), are for testing. The experiments are
repeated 10 times and the average rankl to rank 3 accuracies are recorded and
shown in the figure 2. From the results shown in Figure 2, it can be seen that
the recognition accuracy of our method increases from 90.90% with rank 1 to
96.13% with rank 3. The results show that (i) the proposed method gives almost
the same results with KIPRFD algorithm (the two curves are almost overlapped
in Figure 2) and (ii) the proposed method outperforms than other five methods.

Finally, we would like to demonstrate the CGM iterative procedure. For fixed
pose 2 with illumination variation case, the CGM starts from the initial values
0y = 0.0295, t5 = 0.0039, step length=0.00125 and wy = ones(N,1) € RY.
The CGM iterative procedure terminates at the iterative number 7, since the
regularized parameter t; = —0.0001 < 0. The results show that the rank 1
accuracy increases from 86.49% with 6; = 0.029, t; = 0.0027 to 90.27% with
the final optimal parameter values g = 0.0373, ts = 0.0004. The regularized
parameter 6 and the kernel parameter ¢ versus Rankl accuracy are recorded and
plotted in the left side and right side of Figure 3 respectively.
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Fig. 2. Performance evaluation on pose and illumination.
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Fig. 3. Initial value 6y = 0.0295, tc = 0.0039, step length=0.00125 and wo =
ones(N,1) € RY. The regularized parameter 6 and the kernel parameter t versus
Rank1 accuracy are recorded and plotted in the left side and right side of this figure
respectively.

4 Conclusions

In this paper, a new one-parameter Regularization Kernel Fisher Discriminant
(IPRKFD) is designed and developed based on two parameters regularized for-
mula. We can select optimized regularized parameter ¢ and kernel parameter
6 of RBF kernel function simultaneously for 1IPRKFD algorithm by perform-
ing conjugate gradient method (CGM). The results are encouraging on YeleB
face databases. The performance are comparable with our previous developed
K1PRFD method, but it outperforms with the existig LDA-based algorithm on
pose and illumination variation. As the size of Yale B database is a relatively
small, we will evaluate the proposed algorithm with larger databases in near
future.
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Abstract. In this work an automatic assignment tool for estimated in-
dependent components within an independent component analysis is pre-
sented. The algorithm is applied to the problem of removing the water
artifact from 2D NOESY NMR spectra. The algorithm uses local PCA
to approximate the water artifact and defines a suitable cost function
which is optimized using simulated annealing. The blind source separa-
tion of the water artifact from the remaining protein spectrum is done
with the recently developed algorithm dAMUSE.

1 Introduction

Blind Source Separation (BSS) methods consider the separation of observed
sensor signals into their underlying source signals knowing neither these source
signals nor the mixing process. Considering biomedical applications, BSS meth-
ods are especially valuable to remove artifacts from the signals recorded. In
many biomedical applications quite a number of independent components have
to be determined with ICA algorithms and it is not a priori clear how many
components should be assigned to the signals representing the artifacts. This
is especially obvious in 2D NOESY NMR proton spectra of proteins, where a
prominent water artifact distorts the recorded spectra considerably. Recently ar-
tifact removal was considered using BSS techniques based on a generalized eigen-
value decomposition (GEVD) of a matrix pencil [5, 10]. Replacing the GEVD
with the algorithm dAMUSE [3, 9], BSS and denoising can be achieved in one
stroke. The method is very efficient and fast and outperformed FastICA and
SOBI in all cases studied [7]. But, the estimated components related with the
water artifacts had to be assigned by hand. With more than 100 estimated com-
ponents this turns out to become a rather tedious undertaking prone to be biased
by subjective judgements of the assignment criteria.

In this work we propose a local PCA approximation to the free induction
decay (FID) related with the water artifact and to use simulated annealing [3] to
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determine those underlying uncorrelated components, estimated with dAMUSE,
which have to be assigned to the water artifact.

The following section will provide a short summary of the algorithm
dAMUSE [9] and introduces the new algorithm AutoAssign. To illustrate the
proposed method, an application is discussed comprising theoretical 2D NOESY
NMR spectra with added noise and an experimental water resonance added as
well.

2 Theory

2.1 BSS Model

Given N complex sensor signals z(t1 n,t2;) = x,[l] sampled at L discrete time
instances, they can be arranged in a data matrix Xyxz with N rows and L
columns, where the rows of the data matrix correspond to 1D free induction
decays (FIDs) of the 2D NOESY experiment taken at N discrete evolution times

ti, = [n], n = 1,...,N. Blind source separation (BSS) then relies on the
following linear mixing model x[I] = As[l]+€[l] wherel =0,...,L—1 and x[I] =
(z1[1],...,zn[l])T designates the observed signals sampled at time instance I, sl

the underlying uncorrelated source signals, A the stationary mixing matrix and
€[l] an additional zero mean white Gaussian noise term which is independent of
the source signals.

2.2 The Algorithm dAMUSE

A generalized eigenvalue decomposition using congruent matrix pencils may be
used to separate water artifacts from 2D NOESY NMR spectra of proteins [0].
It provides the basis for the algorithm dAMUSE [9] used in the following, hence
a short summary of the algorithm will be given.

Matriz Pencils: To solve the BSS problem we rely on second order GEVD tech-
niques using congruent matrix pencils [10, 1 1]. First a matrix pencil (R;1, Rg2) is
computed with the sensor signals x[l], i.e. the observed FIDs. The Rg;, j =1,2
denote corresponding correlation matrices of zero mean data. A GEVD of the
sensor pencil then provides a solution for the BSS problem [10] and is given by
R.1E = R, 2EA where E represents a unique eigenvector matrix if the diagonal
matrix A has distinct eigenvalues \;.

Embedding the Signals in Feature Space: Recently the GEVD using congruent
matrix pencils has been extended to data embedded in a high-dimensional fea-
ture space of delayed coordinates to provide a means to perform BSS and denois-
ing simultaneously [2, 9]. The method uses the concept of a trajectory matrix
borrowed from singular spectral analysis (SSA) [I]. Consider a sensor signal
component z,[l], each row of the trajectory matrix [!] contains delayed ver-
sions z, (I + (M — m)K), where K denotes the delay in number of sampling
intervals between consecutive rows and M gives the dimension of the embed-
ding space. Using a set of L samples and M delayed versions of the signal
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ol + (M —m)K], 1 =0,...,L—1, m =0,...,M — 1, the trajectory ma-
trix is given by

Zp[(M —1D)K] 2ol + (M - 1)K] --- Zn[L — 1]
Tn[(M — 2)K] zn[l + (M — 2)K] - - Tn[L —1— K]
(X:) = | | | 1)
zn[0] Zn[1] v xp[L—1— (M —1)K]

The total trajectory matrix X¢ of all N signals is formed by concatenating the
component trajectory matrices X¢ according to: X¢ = [X$X§...X%]7. After
embedding, the instantaneous mixing model can be written as X¢ = A®S® where
S¢ also represents the source signal trajectory matrix, A = A, @ Iy« is a
block matrix and Ips« s denotes the identity matrix. Then if A,, is an invertible
matrix, A€ is also invertible as it is the Kronecker product of two invertible
matrices. The sensor pencil can be computed with R,; = L7' XX and Ry =
L='ZZ" using the trajectory matrix X¢ and a filtered version Z¢ = XCH with
C a circular convolution matrix and H denoting the Hermitian conjugate [3]. The
sensor pencil is again congruent with a corresponding source pencil, hence the
respective eigenvectors are related by Ef = E A¢. The linear transformation of
the trajectory matrices then reads Z¢ = EffX¢ = Ef A°S¢ = EXS¢ Assuming
that the source signals and their filtered versions are uncorrelated, the matrix
E; is block-diagonal, with block size (M x M).

Denoising Using the Algorithm dAMUSE: The eigenvalues and eigenvectors of
a matrix pencil can be obtained via standard eigenvalue decompositions (EVD)
applied in two consecutive steps. Considering the pencil (R;1, R;2) the following
steps are performed:

— Compute a standard eigenvalue decomposition of the symmetric positive
definite correlation matrix R,y = VAV ie, the eigenvectors (v;) and
eigenvalues ();) and organize the eigenvalues in descending order (\; >
A2 > ... > Ag...> Aym). For denoising purposes, a variance criterion has
been established to retain only the largest eigenvalues exceeding a threshold
parameter © [9].

— The transformation matrix can then be computed using the ¢ largest eigen-
values and respective eigenvectors () = A2 VH where Qisan gx NM
matrix.

— Compute the matrix R = QR,2Q* and its standard eigenvalue decompo-
sition: the eigenvector matrix U and eigenvalue matrix D,

The eigenvectors of the pencil (R;1, Ry2) form the columns of the eigenvector
matrix E = QYU = VA~ U which can be used to compute the output signals
as described above.

2.3 The Algorithm AutoAssign

Applying the BSS algorithms above to 2D NOESY NMR spectra to separate the
water artifact and related artifacts from the protein spectra, the most tedious
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task is to assign the uncorrelated components estimated to the water signal.
Because of erratic phase relations, up to 40 estimated components out of 128
or 256 need to be assigned to the water resonance. Hence an automated and
objective assignment procedure deemed necessary.

The idea is to embed the signal in a high-dim feature space of delayed co-
ordinates and to apply a cluster analysis to the columns of the corresponding
trajectory matrix. Within each cluster a local PCA is then performed to obtain
a low-dim approximation to the signals using only the most important principal
components to approximate the signals. The latter are then feed into a suitable
cost function which is optimized with simulated annealing.

Embedding and Local PCA: Consider a signal x,[l] = (zp[l], @[l + 1], ...,z [l +
(M — 1)))T embedded in an M-dim feature space. Divide the space in k sub-
spaces N %) using k-means clustering and center the signals in each cluster lo-
cally by subtracting the cluster mean %\ = (NF)~1 > jens Xnll]. Next a
principal component analysis (PCA) is performed on each cluster separately.
Then a local approximation ng])g (1] =325 aylllw; + %) to the time domain
signal is computed, using only the eigenvectors w; to the p largest eigenvalues

and o = <x§lk2) [[]w;). This yields the new trajectory matrix X%k])g with entries

xﬂfZ, [[] and M delayed version thereof. The final local approximation <x$lk2, NG
is obtained by averaging all entries at the same time instance (which lie along
diagonals). Putting together all these local approximations yields the final ap-
proximation to the original signal observed.

As the water signal provides the dominant contribution to each FID observed,
the approximation can be simplified further by retaining only the principal com-
ponent to the largest eigenvalue, i.e. x,,1[l] = a1[{]wi. The approximation thus
contains the contribution from the water signal almost exclusively.

Simulated Annealing: This approximation to the FID related with the water
artifact is then used to define a cost function £(8) = lL;Ol(a:nﬂ[l] — Zn1[l])?
to be minimized with simulated annealing [3]. The BSS approximation to the
water signal using the uncorrelated components estimated with the dAMUSE
algorithm is obtained as z, g[l] = >, 3j(A)n;s;[l] where a new configuration
B is generated by changing any ; randomly. A configuration is represented by
a vector 3 which contains as many components [3; as there are sources s;. To
each source one element of [ is assigned which can take on the values 8; € {0,1}
only. The difference in the values of the cost function for the current and the new
configuration AE = £(8,,) — £(B,,,1) determines the probability of acceptance
of the new configuration in the simulated annealing algorithm according to

P[BnJrl]
P[]

After convergence, the configuration which best fits to the local PCA approxi-
mation of the water signal is obtained. Nullifying these components deliberately,
the water-artifact-free protein spectrum x,, can be reconstructed using the re-
maining estimated source signals s, via x,, = AS,,.

= min{1, exp <_ é?)} (2)



AutoAssign — An Automatic Assignment Tool for Independent Components 79

3 Results and Discussion

The algorithms discussed above were applied to an artificial 2D NOESY proton
NMR spectra of proteins dissolved in water. Every data set comprises 512 or
1024 FIDs S(t1,t2) = x,[l], with L = 2048 samples each, which correspond
to N = 128 or N = 256 evolution periods t; = [n]. To each evolution period
belong four FIDs with different phase modulations, hence only FIDs with equal
phase modulations have been considered for analysis. A BSS analysis, using
the algorithm dAMUSE, was applied to the FIDs collected in the data matrix
X. Filtering was done in the frequency domain for convenience. Hence, all FIDs
have been Fourier transformed with respect to the sampling time 2 to obtain 1D
spectra S(t),ws) = Xn(w), 0 <n <128 or 0 < n < 256. The filtered versions
of the data were obtained by applying a Gaussian filter i(w) with width o =1,
centered near the water resonance, to each row of the data matrix X. After
filtering the data have been back-transformed to the time domain to calculate
the corresponding correlation matrices of the pencils. The automatic assignment
of the uncorrelated components, estimated with dAMUSE, which belong to the
water resonance was achieved using the proposed algorithm AutoAssign which
is based on a local PCA and a simulated annealing optimization.

For test purposes, a theoretical 2D NOESY proton NMR spectrum of the
cold-shock protein of the bacterium Thematoga maritima, containing only pro-
tein resonances, was used. The spectrum was obtained through reverse calcula-
tion using the algorithm RELAX [2]. Gaussian white noise with realistic ampli-
tude as well as an experimentally recorded water resonance were added to the
theoretical spectrum (see Fig. 1).

The BSS was done with the algorithm dAMUSE [9] using K = 1. The second
correlation matrix R,o of the pencil was computed with the theoretical spec-
trum with added noise taken as the filtered version of the original spectrum.
An approximation of the water artifact dominating the time domain FIDs was
obtained with the local PCA algorithm. As the experimental pure water FID
was available also, both could be compared to access the quality of the approx-
imation. To perform local PCA, each sample of the data was projected into a
M = 40 dimensional feature space and k-means clustering was used to divide
the projected data into k = 2 cluster. Only the largest principal component was
considered to approximate the water signal.

Fig. 2-a) compares the total FID corresponding to the shortest evolution
period with the local PCA approximation (Fig. 2-b)) of the latter. It is imme-
diately obvious that the water artifact dominates the total FID. It is seen that
local PCA provides a very good approximation to the water artifact. This can be
corroborated by subtracting the approximate water FID from the total FID and
transforming the resulting FID into the frequency domain. The resulting pro-
tein spectrum contains only small remnants of the huge water artifact as can be
seen in Fig. 3. The spectra thus obtained will henceforth be called approzimated
spectra.

This indicates that it should be possible to use the local PCA approxima-
tion of the water artifact as a reference signal in a cost function to be min-
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Fig. 1. (a) — Theoretical protein spectrum, (b) — Theoretical protein spectrum with
Gaussian noise, (¢) — Theoretical spectrum with Gaussian noise and an experimentally
recorded water resonance.

imized with a simulated annealing algorithm. This is confirmed by analyzing
the theoretical protein spectra plus noise plus water artifact (see Fig. 1-¢))
with the dJAMUSE algorithm to extract the uncorrelated components and us-
ing simulated annealing (SA) to automatically assign those components related
with the water artifact. The SA-algorithm identifies the same 9 components
irrespective whether the experimental water FID or its local PCA approxima-
tion has been used in the cost function. Without denoising, the reconstructed
protein spectrum resembles the original noisy spectrum (Fig. 1-b)) except for
a much enhanced noise level. Calculating the signal-to-noise ratio (SNR) via

SNR(X, Xnoise)[dB] = 201og;, I a where x denotes the theoretical spec-

—Xnoise H
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Fig. 2. Free Induction Decays (FID) of a) — the total FID of the protein signal plus
additive noise plus an experimental water FID, b) — local PCA approximation of the
total FID.
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Fig. 3. a) — Protein spectrum obtained after subtracting the approximated water FID
from the total FID and Fourier transformation of the difference FID, b) — Reconstructed
protein spectrum obtained with AAMUSE.

trum, X,.ise its noisy counterpart, the theoretical spectrum plus gaussian noise
shows a SNR of 24.5dB, whereas the reconstructed protein spectrum only yields
a SNR of 10.1dB. Denoising can be accomplished elegantly with the dAMUSE
algorithm which achieves blind source separation and denoising simultaneously.
The water related components extracted are automatically assigned with the
algorithm AutoAssign using a local PCA approximation to the water artifact.
The optimal number M of delays as well as the optimal size of the time lag
have been determined by the best minimum to the cost function obtained with
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the SA algorithm. A minimum of the cost function has been obtained with us-
ing one time-delayed FID, a lag of one sampling interval and by retaining 158
eigenvectors (out of 2 - 128) after the first step of the algorithm dAMUSE. The
result of the JAMUSE denoising is shown in Fig. 3, the SNR achieved amounts
to SNR = 22.1 dB.
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Abstract. In this paper a new adaptive correlation filter based on synthetic dis-
criminant functions (SDF) for reliable pattern recognition is proposed. The in-
formation about an object to be recognized and false objects as well as back-
ground to be rejected is used in an iterative procedure to design the adaptive
correlation filter with a given discrimination capability. Computer simulation
results obtained with the proposed filter in test scenes are compared with those
of various correlation filters in terms of discrimination capability.

1 Introduction

Since the introduction of the matched spatial filter (MSF) [1], many different types of
filters for pattern recognition based on correlation have been proposed [2-11]. The
traditional way to design correlation filters is to make filters that optimize different
criteria. Several performance measures for correlation filters have been proposed and
summarized in [S]. Some of the measures can be essentially improved using an adap-
tive approach to the filter design. According to this concept we are interested in a
filter with good performance characteristics for a given observed scene, i.e. with a
fixed set of patterns or a fixed background to be rejected, rather than to construct a
filter with average performance parameters over an ensemble of images.

One of the most important performance criteria in tasks of pattern recognition is
the discrimination capability, or how well a filter detects and discriminates between
classes of objects. A theoretical analysis of correlation methods has been made by
Yaroslavsky [6]. He suggested a filter with minimum probability of anomalous local-
ization errors (false alarms) and called the optimal filter (OF). An important feature
of the OF is its adaptivity in application to pattern recognition or target detection
because its frequency response takes into account the power spectrum of wrong ob-
jects or an observed scene background to be rejected. A disadvantage of the OF in
optical implementation is its extremely low light efficiency. The correlation filter
with maximal light efficiency is a phase-only filter (POF) [2]. An approximation of
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the OF by means of phase-only filters with a quantization was made in [7]. There
approximate filters with high light efficiency and discrimination capability close to
that of the OF were proposed and investigated. Another fruitful approach to the syn-
thesis of adaptive filters with improved capability to discriminate between similar
objects was proposed in [10].

An attractive approach to distortion-invariant pattern recognition is the use of a
synthetic discriminant function (SDF) filter [3, 4]. The SDF filters use a set of train-
ing images to synthesize a template that yields a prespecified central correlation out-
puts in response to training images. The main shortcoming of the SDF filters is ap-
pearance of sidelobes owing to the lack of control over the whole correlation plane in
the SDF approach. As a result, the SDF filters often possess a low discrimination
capability. A partial solution to this problem was suggested [11].

In this work, a new adaptive SDF filter algorithm is proposed for elimination of
sidelobes and improving the discrimination capability. The proposed filter is designed
to reject sidelobes of an input scene background as well as false objects. In such a
way we are able to control the whole correlation plane. The performance of the adap-
tive filter in test scenes are compared with those of the MSF, the POF and the OF in
terms of discrimination capability.

Section 2 is a review of SDF filters. The design of the adaptive SDF algorithm is
given in Section 3. Computer simulation results are presented and discussed in Sec-
tion 4. Finally, conclusions of our work are provided in Section 5.

2 Synthetic Discriminant Functions

The SDF filter is a linear combination of MSFs for different patterns [3, 4]. The coef-
ficients of the linear combination are chosen to satisfy a set of constraints on the filter
output, requiring a prespecified value for each of the patterns used in the filter synthe-
sis

2.1 Intraclass Recognition Problem

Let { /i (x, y)}, i=1,2,..,N be a set of (linearly independent) training images, each
with d pixels. The SDF filter function & (x, y) can be expressed as a linear combina-
tion of the set of reference images f;(x,y), i.e.

N

hey) =Y afi(x,y) ()

i=1
where a; are weighting coefficients, which are chosen to satisfy the following condi-
tions:
fich=u; 2)
where the symbol o denotes correlation and u; is a prespecified value in the correla-
tion output at the origin for each training image.
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Let R denote a matrix with N columns and d rows (number of pixels in each
training image), where its ith column is given by the vector version of f;(x,y). Let a

and u represent column vectors of the elements g; andu;, respectively. We can re-
write equations (1) and (2) in matrix-vector notation as follows:
h=aR, 3)

u=R"h, “4)
where superscript + means conjugate transpose. By substituting equation (3) into
equation (4) we obtain

u=([R"R)a. o)

The element (i, j) of the matrix S = (R*R) is the value at the origin of the cross-

correlation between the training images f;(x,y) and f;(x,y) . If the matrix S is non-

singular, the solution of the equation system is
a=R'R)u, (6)
and the filter vector is given by
h=RR'R)u. (7)

An equal correlation peak SDF filter can be used for intraclass distortion-invariant
pattern recognition, (i.e., recognition of several images obtained from the true class
objects). This can be done by setting all elements of u to unity, i.e.

u=[11..1". (8)

2.2 Multiclass Recognition Problem

Now assume that there are a distorted version of the reference and various other
classes of objects to be rejected. For simplicity, we consider two-class recognition
problem. Thus, we design a filter to recognize training images from one class (called
the true class) and to reject training images from another class (called the false class).

Suppose that there are M training images for the false class
{p;(x,y)},i=12,....,M . According to the SDF approach, the composite image
h(x,y) is a linear combination of the training images; that is,
{ i) (6, ), PL(X5 Y)seees Par (%, ¥)} . The both intraclass recognition and inter-
class discrimination (i.e., discrimination of the true class objects against the false
class objects) problems can be solved by means of SDF filters. We can set u; =1 for

the true class objects and u; =0 for the false class objects as follows:

u=[11...100...0]" )
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Using the filter in (7) for pattern recognition, we expect that the central correlation
will be close to 1 for the true class objects and it will be close to O for the false class
objects. Obviously the above approach can be extended to any number of classes (in
theory). Unfortunately, this simple procedure is the lack of control over the whole
correlation output. This means that sidelobes may appeared anywhere on the correla-
tion plane.

3 Design of Adaptive SDF Filter

A new adaptive SDF filter is proposed to recognize objects in high cluttered input
scenes. We use discrimination capability (DC) for the filter design. The DC for pat-
tern recognition is defined [5, 10] as the ability of a filter to distinguish a target
among other different objects. If a target is embedded into a background that contains
false objects, then the DC can be expressed as follows:

‘CB(O,O)‘Z
DC=1-"— (10)

‘CT (0,0)‘2

where C’ is the maximum in the correlation plane over the background area to be
rejected, and C” is the maximum in the correlation plane over the area of object to be
recognized. The area of the object to be recognized is determined in the close vicinity
of the target location (the size of the area is similar to the size of the target). The
background area is complementary to the object area. Negative values of the DC
indicate that a tested filter fails to recognize the target.

We are interested in a filter that identifies the target with a high discrimination ca-
pability in high cluttered and noisy input scenes. In this case, actually conventional
correlation filters yield a poor performance because of a low tolerance to noise and
false details. With help of the adaptive SDF filters a given value of the DC can be
achieved.

The algorithm of the filter design requires knowledge of the background image.
This means that we are looking the target with unknown location in the known input
scene background. The background can be described either stochastically, for in-
stance, it can be considered as a realization of stochastic process or deterministically,
that can be a given picture. The first step is to carry out correlation between the back-
ground and a basic filter SDF filter, which is trained only with the target. Next, the
maximum of the filter output is set as the origin for the next iteration of training. Now
two-class recognition problem is utilized to design the SDF filter; that is, the true
class is the target and the false class is the background with the region of support
equals to that of the target. The described iterative procedure is carried out while a
given value of the DC is obtained. A block-diagram of the procedure is shown in
Fig. 1.

Finally, note that if other objects to be rejected are known, they can be directly in-
cluded in the SDF filter design.
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Fig. 1. Block diagram of the iterative process to design the adaptive SDF filter.

4 Computer Simulation

In this section simulation results obtained with the adaptive SDF filter are presented.
These results are compared with those of the MSF, the POF and the OF filters. The
size of all images used in our experiments is 256x256 pixels. The signal range is [0-
255]. The size of the butterflies is about 30x20 pixels. We use a real background
shown in Fig. 2 (a) as an input scene. The average and standard deviation of the
background are 84 and 40, respectively. The target is a butterfly shown in Fig. 2(b).
The average and the standard deviation over the target area are 35 and 22, respec-
tively. The signal to noise ratio of these signals is 0.0017.

Fig. 2. (a) Real background used in experiments, (b) target.

(b)

Figure 3 shows the performance of the adaptive filter in terms of the DC versus the
iteration number. One can observe that before iteration 2 the DC is negative. After 20
iterations the obtained adaptive filter yields DC=0.998. All calculations are made
with real values. This means that a high level of the correlation plane control can be
achieved for a given input scene.
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DC vs. iterations
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Fig. 3. Performance of the adaptive SDF filter at each iteration.

(b)

Fig. 4. Test scenes. (a) target is marked with a white arrow, (b) target is in the lower left corner
and false butterfly in the upper right corner.

Next, we test the performance of pattern recognition with the adaptive filter when
the target is placed into the background at arbitrary coordinates. The input scene is
shown in Fig. 4 (a). The performance of the MSF, the POF and the OF in terms of the
DC is given in line 1 of Table 1. Obviously, the proposed filter referred to as A-SDF1
gives the best performance in terms of the DC. We used 30 statistical trials of our
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Table 1. Performance of different correlation filters in terms of DC.

Scene MSF POF OF A-SDF1 A-SDF2
a -0.988 -0.422 0.626 0.992 -
b -2.507 -2.995 -1.374 0.633 0.985

experiment for different positions of the target. With 95% confidence the DC is equal
to 0.992+0.007.

Next, we place a false butterfly into the background. The average and standard de-
viation over the false object are 74 and 29, respectively. This scene is shown in
Fig. 4(b). The adaptive filter design was made taking into account the false butterfly.
We called the second adaptive filter as A-SDF2. Pattern recognition with the adaptive
filter when the target is embedded into the background at arbitrary coordinates was
performed. The input scene is shown in Fig. 4 (b). The performance of the correlation
filters in terms of the DC is given in line 2 of Table 1. In this case the proposed adap-
tive yields also the best performance in terms of the DC. With 95% confidence the
DC is equal to 0.985+0.009.

Figure 5 shows the correlation planes obtained with A-SDF1 and A-SDF?2 filters
for two test scenes; that is, Fig. 5(a) is the filter output with A-SDF1 for Fig. 4 (a) and
Fig. 5(b) is the filter output with A-SDF2 for Fig. 4 (b).

(@) (b)
Fig. 5. Correlation distributions obtained with (a) adaptive SDF filter A-SDF1 for the test scene
in Fig. 4(a), (b) adaptive SDF filter A-SDF?2 for the test scene in Fig. 4(b).

5 Conclusion

In this paper, new adaptive SDF filters have been proposed to improve recognition of
a target embedded into a known cluttered background. We compared the performance
of pattern recognition with various popular correlation filters and the proposed adap-
tive SDF filters in terms of discrimination capability. The computer simulation results
have shown the superiority of the proposed filters comparing with the MSF, the POF,
and the OF filters.
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Abstract. Globally exponential stability of non-autonomous delayed
neural networks is considered in this paper. By utilizing delay differen-
tial inequalities, a new sufficient condition ensuring globally exponential
stability for non-autonomous delayed neural networks is presented. The
condition does not require that the delay function be differentiable or
the coefficients be bounded. Due to this reason, the condition improves
and extends those given in the previous literature.

1 Introduction

Autonomous delayed neural networks(DNNs) have been extensively studied in
the past decade and successfully applied to signal-processing systems, static im-
age treatment, patter recognition, associative memories and to solve nonlinear
algebraic equations. Such applications rely on qualitative properties of stability.
For this reason, the stability of autonomous delayed neural networks have been
deeply studied and many important results on the global asymptotic stability
and global exponential stability of one unique equilibrium point have been pre-

sented, see, for example,[1]-[21] and references cited therein. However, to the best
of our knowledge, few studies have considered dynamics for non-autonomous de-
layed neural networks [22]. In this paper, by using a delay differential inequality,

we discuss the globally exponential stability of non-autonomous delayed neural
networks and obtain a new sufficient condition. We do not require the delay to
be differentiable.

2 Preliminaries

The dynamic behavior of a continuous time non-autonomous delayed neural
networks can be described by the following state equations:

() = —c®mlt) + 32 a () f; (1))
. (1)
+ > b () fi(xi(t —75(t))) + Li(t).

Jj=1
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where n corresponds to the number of units in a neural networks; z;(t) corre-
sponds to the state vector at time t; f(z(t)) = [fi(z1(2)), -, fu(za ()] € R®
denotes the activation function of the neurons; A(t) = [a;;()]nxn is referred
to as the feedback matrix, B(t) = [b;;(t)]nxn represents the delayed feedback
matrix, while I;(¢) is a external bias vector at time ¢, 7;(t) is the transmission
delay along the axon of the jth unit and satisfies 0 < 7;(¢) < 7.

Throughout this paper, we will assume that the real valued functions ¢;(¢) >
0,a;(t),b;5(t), I;(t) are continuous functions. The activation functions f;,i =
1,2,---,n are assumed to satisfy the following conditions (H)

Ifi(&1) = fi(&2)| < Li|&1 — & , V&1, &a.

This type of activation functions is clearly more general than both the usual
sigmoid activation functions and the piecewise linear function (PWL): f;(x) =
5(lz 4+ 1] — |z — 1]) which is used in [].

The initial conditions associated with system (1) are of the form

(5) = o - = +
x;(s) = ¢i(s), s€[-7,0], T 121%)(”{71 }

in which ¢;(s) are continuous for s € [—,0].

Throughout this paper, we denote DT as the upper right Dini derivative. For
any continuous function f : R — R, the upper right Dini derivative of f(t) is

defined as
D+f(t) — Jli%l+ sup f(t =+ 56) - f(t)

Lemma 1. [23] Let x(t) be a continuous nonnegative function on t > to — T
satisfying inequality (2) for t > to.

DT x(t) < —ki(t)z(t) + k2(1)Z(2) (2)
where Z(t) = sup {x(s)}. If ki(t) or ka(t) is bounded, and o = infyi>¢.y
{k1(t) — kg(t)}t;T6iSt;16n there must exist a positive n > 0 such that

(t) < Z(to) exp{—n(t — to)} (3)

holds for all t > to — .

3 Global Exponential Stability Analysis

In this section, we will use the above Lemma to establish the exponential stability
of system (1). Consider two solutions z(t) and z(¢) of system (1) for ¢ > 0
corresponding to arbitrary initial values z(s) = ¢(s) and z(s) = ¢(s) for s €
[—7,0]. Let y;(t) = z;(t) — z(t), then we have

yL(t) = —ei(tyy(t) + z ais (1) (f3(25(8)) — f3(25(8)
30 b (1) (f (s (= 75(8) = f3(z5(t = 5(8))) (4)

J=1
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Set g;(y; (1)) = f(y;(t) + 2;(t)) — fj(2;(t)), one can rewrite Eq.(4) as

yi(t) = —ci(t)yi(t) + Z ai; (t)g; (y; (1) + Y _ bis(B)g; (Wit —75(1) ()

j=1
Note that the functions f; satisfy the hypothesis (H), that is,

l9i(&1) — gi(&2)| < Lil&1 — & , V&1, &a.
gi(0) =0 (6)

From Eq.(5), we can get

DFyi(t)] < —ci(®)lys (W) + Y Lilay (8)lly;(6)] + D Lylbi Oll7;(8)]  (7)

j=1 j=1
Theorem 1. Let

k1 (t) = min, lcz'(f) = o Lz‘|aji(f)|]

j=1
ka(t) = max; (é ® Ly (t)|>

where a; > 0 is a positive constant. Eq.(1) is globally exponentially stable if
a= gltfo {k1(t) — k2(t)} >0

Proof. Let z(t) = Y. a;|y;(t)|, Calculating the Dini derivative of z(t) along
the solutions of (5), we get

o DT |y (t)]

-

s
Il
-

DT z(t) <

a; [ =iy + Y Lilai (t)lly; (t)]

1 j=1

-

<

K2

+ZLj|bij(t)||gj(t)|

n n oy
= Zai ci(t) — Z aj- Lifazi ()| lyi(t)]
=1 | j=1 "
n n Qg _
+Zai ZazLﬂbji(tﬂ |9 (t)]
=1 [j=1

< —ki(D)2(t) + ka(t)Z(t)
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According to Lemma above, if the condition (3) is satisfied, then we have

O'min Z lyi(t)] < z(t) = Zai|yz‘(t>

< Z(to) exp{—n(t —to)}

n

Z ai|gi(to)| exp{—n(t —to)}

< Qumax 21 |9i(to)| exp{—n(t —to)}

which implies that Y77 [y;(t)] < 0= 37 [g(to)| exp{—n(t — to)}. This com-
pletes the proof.

Remark 1. Note that the criteria obtained here are independent of delay and
the coefficients ¢;(t), a;;(¢) and b;;(t) may be unbounded.

4 An Illustrative Example

In this section, we will give an example showing the effectiveness of the condition
given here.

Ezxample 1. Consider the following non-autonomous delayed neural networks

z1(t) = —c1(t)z1(t) + ann(t) f(z1(2)) + ar2(t) f(22(2))
, +o11 () f(z1(t — 71(2))) + bi2(t) f(z2(t — 72(2))) )
To(t) = —ca(t)za(t) + az (t) f(z1 (1)) + a2z (t) f(22(t))
+ba1 () f(z1(t — 71(2))) + b2a(t) f(22(t — 72(2)))

where the activation function is f;(z) = tanhz. Clearly, f;(z) satisfy hypothesis
(H) above , with L; = Ly = 1. For model (9), taking

cl():et—|—2|sint|—|—3 co(t) = |sint| + | cost| + 3;
ai(t) = e' + |sint|, ai2(t) = sint;

az1(t) = sint, aga(t) = — cost;

b11(t) = 1 +sint, bya(t) =1 — cost;

bo1(t) =1 —sint, baa(t) = 1+ cost;

Ti(t) = ma(t) = 2(|1ﬁ+1|—|15—1|);

a1 = (g = 1,
then we can easily check that
a=inf {ki(t) —ke(t)} =1>0
t>to

Therefore, it follows from Theorem 1 that the system (9) is globally exponentially
stable.
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Remark 2. Since the delay function 7(¢) in Eq.(9) is not differentiable, the results
in [3] and in [22] can not be applied to this example. Furthermore, due to the
unboundedness of ¢1(t) and aj1(t), the results in [21] are not applicable for this
example. Hence, the results here improve and extend those established earlier in

[3]; [22] and [21].
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Abstract. This paper is concerned with time series of graphs and com-
pares two novel schemes that are able to predict the presence or absence
of nodes in a graph. Our work is motivated by applications in com-
puter network monitoring. However, the proposed prediction methods
are generic and can be used in other applications as well. Experimental
results with graphs derived from real computer networks indicate that a
correct prediction rate of up to 97% can be achieved.

1 Introduction

Time series, or sequence, data are encountered in many applications, such as fi-
nancial engineering, audio and video databases, biological and medical research,
and weather forecast. Consequently, the analysis of time series has become an im-
portant area of research [1]. Particular attention has been paid to problems such
as time series segmentation [2], retrieval of sequences or partial sequences [3], in-
dexing [], classification of time series [5], detection of frequent subsequences [(],
periodicity detection [7] and prediction [3—10].

Typically a time series is given in terms of symbols, numbers, or vectors [1].
In the current paper we go one step further and consider time series of graphs.
A time series of graphs is a sequence, s = g1, ..., g, where each g; is a graph.
In a recent survey it has been pointed out that graphs are a very suitable and
powerful data structure for many operations needed in data mining in intelligent
information processing [1 1]. As a matter of fact, traditional data structures, such
as sequences of symbols, numbers, or vectors, can all be regarded as a special
case of sequences of graphs.

The work presented in this paper is motivated by one particular application,
which is computer network monitoring. In this application, graphs play an im-
portant role [12]. The basic idea is to represent a computer network by a graph,
where the clients and servers are modeled by nodes and physical connections cor-
respond to edges. If the state of the network is captured at regular points in time

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 99-106, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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and represented as a graph, a sequence, or time series, of graphs is obtained that
formally represents the network. Given such a sequence of graphs, abnormal net-
work events can be detected by measuring the dissimilarity, or distance, between
a pair of graphs that represent the network at two consecutive points in time.
Typically an abnormal event manifests itself through a large graph distance [12].

In the current paper we address the problem of recovering incomplete network
knowledge. Due to various reasons it may happen that the state of a network
node or a network link can’t be properly captured during network monitoring.
This means that it is not known whether a certain node or edge is actually
present or not in the graph sequence at a certain point in time. In this paper
we compare two different schemes to recover missing information of this kind.
The first procedure uses context in time, i.e. the past behaviour of a node is
used to decide about its presence or absence in the present graph. By contrast,
the second procedure uses within-graph context, which means that the decision
about the presence or absence of the current node is based on the presence or
absence of other nodes in the same graph. An information recovery procedure as
described in this paper can also be used to predict, at time ¢, whether a certain
computer in the network or a certain link will be present, i.e. active, at the next
point in time, ¢+ 1. Such procedures are useful in computer network monitoring
in situations where one or more network probes have failed. Here the presence, or
absence, of certain nodes and edges is not known. In these instances, the network
management system would be unable to compute an accurate measurement of
network change. The techniques described in this paper can be used to determine
the likely status of this missing data and hence reduce false alarms of abnormal
change. Although the motivation of our work is in computer network monitoring
the methods described in this paper are fairly general and can be applied in
other domains as well.

The rest of this paper is organized as follows. Basic terminology and notation
will be introduced in the next section. Then, in Sections 3 and 4 we will describe
our two novel information recovery and prediction schemes. Experimental results
will be presented in Section 5 and conclusions drawn in Section 6.

2 Basic Concepts and Notation

A labeled graph is a 4-tuple, g = (V, E, «, ), where V' is the finite set of nodes,
E CV xV is the set of edges, a : V — L is the node labeling function, and
B:FE — L is the edge labeling function, with L and L being the set of node
and edge labels, respectively. In this paper we focus our attention on a special
class of graphs that are characterized by unique node labels. That is, for any two
nodes, z,y € V, if z # y then «(x) # « (y). Properties of this class of graphs
have been studied in [13]. In particular it has been shown that problems such as
graph isomorphism, subgraph isomorphism, maximum common subgraph, and
graph edit distance computation can be solved in time that is only quadratic in
the number of nodes of the larger of the two graphs involved.
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To represent graphs with unique node labels in a convenient way, we drop set
V' and define each node in terms of its unique label. Hence a graph with unique
node labels can be represented by a 3-tuple, g = (L, E, ) where L is the set of
node labels occurring in g, F C L x L is the set of edges, and g : £ — L is
the edge labeling function [13]. The terms “node label” and “node” will be used
synonymously in the remainder of this paper.

In this paper we will consider time series of graphs, i.e. graph sequences, s =
91,92, - - -, gn. The notation g; = (L;, E;, ;) will be used to represent individual
graph g; in sequence s; ¢ = 1, ..., N. Motivated by the computer network analysis
application considered in this paper, we assume the existence of a universal set
of node labels, or nodes, £, from which all node labels that occur in a sequence
s are drawn. That is, L; C Lfori=1,...,N and £ = UZJ\; L;.!

Given a time series of graphs, s = ¢g1,92,...,9n, and its corresponding uni-
versal set of node labels, £, we can represent each graph, g, = (L;, E;, 5;), in
this series as a 3-tuple (v, d;, B;) where

— v; : L — {0,1} is a mapping that indicates whether node [ is present in g;
or not. If [ is present in g;, then ~; (I) = 1; otherwise v; (1) = 0.”

—6;: L x £ — {0,1} is a mapping that indicates whether edge (I,l5) is
present in g; or not; here we choose £ = {I | ~; () = 1}, i.e. £ is the set of
nodes that are actually present in g;.

— @ L xL —>Lisa mapping that is defined as follows:

B\i (6) _ {ﬁl (6), ifee {(ll,lg) | 51 (ll,lg) = 1}

undefined, otherwise

The definition of 3; (e) means that each edge e that is present in g; will have
label 3; (e). The 3-tuple (s, d;, @) that is constructed from g; = (L;, E;, 3;) will
be called the characteristic representation of g;, and denoted by x (g;). Clearly,
for any given graph sequence s = g¢i,¢2,...,9n the corresponding sequence
x(s) =x(g1),x(g92),-.-,x(gn) can be easily constructed and is uniquely de-
fined. Conversely, given x (s) = x (91),x (g2), - .., x (gn) we can uniquely recon-
struct s = ¢g1,92,...,9N-

In the current paper we’ll pay particular attention to graph sequences with
missing information. There are two possible cases of interest. First it may not
be known whether node [ is present in graph g; or not. In other words, in x (¢;)
it is not known whether ; () = 1 or ~; (I) = 0. Secondly, it may not be known
whether edge (I1,12) is present in g;, which is equivalent to not knowing, in x (g;),
whether §; (I1,l2) = 1 or 6; (I1,12) = 0. To cope with the problem of missing
information, we extend functions v and ¢ in the characteristic representation,
x (g), of graph ¢ = (L, E, 3) by including the special symbol ? in the range of

! In the computer network analysis application £ will be, for example, the set of all
unique IP host addresses in the network. Note that in one particular graph, g,
usually only a subset is actually present. In general, £ may be any finite or infinite
set.

2 One can easily verify that {I | v; (I) = 1} = L;.
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values of each function to indicate the case of missing information. That is, we
write 7 (1) =7 if it is unknown whether node [ is present in g or not.

3 Recovery of Missing Information Using Context in Time

We assume the existence of a reference set, R, of graph subsequences of length M.
The reference set is defined as R = {s1,...,s,} wheres; =g;1,...,gjnm for j =
1,...,n. BEach element, s;, of the reference set is a sequence of graphs of length
M. These sequences are used to represent information about the “typical be-
haviour” of the nodes and edges in a graph sequence of length M. This infor-
mation will be used to make a decision as to v (I) = 0 or v (I) = 1 whenever
v (1) =? occurs.

To generate reference set R, we can utilize graph sequence g1, ..., g;—1. Each
sequence in R is of length M, by definition. Let’s assume that M <¢ — 1. Then
we can extract all subsequences of length M from sequence g¢1,...,g:—1, and
include them in reference set R. This results in

R={s1=g1,-..,9M ; 82 =02, -, gM+1; St-M = Gt—M - t—1}-
From each sequence, s; = g;,...,gi+nm—1, in set R we can furthermore extract,
for each node I € L, the sequence 7; (I),...,vita—1 (1). Assume for the mo-
ment that v; (1),...,vitm—1 (1) € {0,1}, which means that none of the elements
Yi (), vienm—1 (1) is equal to 7. Then (v; (1),..., vitam—1 (1)) is a sequence
of binary numbers, 0 or 1, that indicate whether or not node [ occurs in a par-
ticular graph in sequence s;. Such a sequence of binary numbers will be called
a reference pattern. Obviously (vi (1), ..., virar—1 (1)) € {0,1}". Because there
are 2M different binary sequences of length M, there exist at most 2™ different
reference patterns for each node [ € L. Note that a particular reference pattern,
z = (x1,...,2n) € {0,1}"™, may have multiple occurrences in set R.

In order to make a decision as to v (I) = 0 or v (I) = 1, given ~ (I) =7,
the following procedure can be adopted. First, we extract from graph sequence

s = g1,...,g¢ the sequence (vi—pr4+1 (1), ...,7 (1)) where, according to our as-
sumption, v, (I) =?. Assume furthermore that v,._ar41 (1),...,7 (1) € {0,1},
i.e. none of the elements in sequence (yi—pr41(1),...,7: (1)), except ¢ (1), is

equal to 7. Sequence (Vi—ar+1 (1),...,v (1)) will be called the query pattern.
Given the query pattern, we retrieve from the reference set, R, all reference pat-
terns © = (21,...,2p) where 21 = ye—pr41 (0,22 = Ye—pmg2 (D) .oy xpm—1 =
~t—1 (1). Any reference pattern, x, with this property is called a matching ref-
erence pattern. Clearly, a reference pattern that matches the query pattern is a
sequence of 0’s and 1’s of length M, where the first M — 1 elements are iden-
tical to corresponding elements in the query pattern. The last element in the
query pattern is equal to 7, by definition, while the last element in any matching
reference pattern is either 0 or 1. Let k£ be the number of reference patterns
that match the query pattern. Furthermore, let kg be the number of matching
reference patterns with z; = 0, and k; be the number of matching reference
patterns with z3; = 1; note that k = kg + k1. Now we can apply the following
decision rule:
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0if kg > k1

e ()= {1 if k1 > ko
In case ko = k1 a random decision is in order. Intuitively, under this decision rule
we consider the history of node [ over a time window of length M and retrieve all
cases recorded in set R that match the current history. Then a decision is made
as to ¢ (I) = 0 or 4 (1) = 1, depending on which case occurs more frequently in
the reference set.

This method is based on the assumption that none of the reference patterns
for node [, extracted from set R, contains the symbol 7. For a generalization
where this restriction is no longer imposed neither in the reference nor in the
query patterns, see [14].

4 Recovery of Missing Information
Using Within-Graph Context

In this section we describe another procedure for information recovery that uses
within-graph context, i.e. the presence or absence of a node is determined based
on the presence or absence of other node in the same graph. The proposed
procedure is based on decision trees. For all technical details of decision trees
and decision tree learning see [15]. Our goal is to make a decision as to v (I) = 0
or v (I) = 1, given 7 (I) =?. Actually, this decision problem can be transformed
into a classification problem as follows. The network at time ¢, g;, corresponds
to the unknown object to be classified. Network g¢; is described by means of a
feature vector, x = (21,...,24), and the decision as to v (1) = 0 or 4+ (I) = 1 can
be interpreted as a two-class classification problem, where ; (1) = 0 corresponds
to class {2y and ~; (1) = 1 corresponds to class 2;. As features x1,..., x4 that
represent the unknown object x, i.e. graph g4, one can use, in principle, any
quantity that is extractable from graphs gi,...,gs. In this paper we consider
the case where these features are extracted from graph g; exclusively. Assume
that the universal set of node labels is given by £ = {lo,1,...,lp}, and assume
furthermore that it is node label [y for which we want to make a decision as
to v (lp) = 0 or v (lo) = 1, given ¢ (Ip) =?. Then we set d = D and use the
D-dimensional binary feature vector (y:(l1),...,v (Ip)) to represent graph g;.
In other words, x = (v (I1),...,7 (Ip)). This feature vector is to be classified
as either belonging to class {2y or 2. The former case correspond to deciding
vt (lp) = 0, and the latter to v (Io) = 1. Intuitively, using (v (I1),...,7 (Ip))
as a feature vector for the classification of g; means we make a decision as to
the presence or absence of [y in g; depending on the presence or absence of all
other nodes from £ in g;. The classification procedure actually implemented is
a decision tree [15]. For further details see [11].

5 Experimental Results

The methods described in Sections 3 and 4 of this paper have been implemented
and experimentally evaluated on real network data. For the experiments four
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Table 1. Characterisation of the graph sequences used in the experiments.

Sl Sz 83 S4

Number of graphs in sequence 102 292 202 99

Size of smallest graph in sequence 38 85 15 572
Size of largest graph in sequence 94 154 329 10704
Average size of graphs in sequence 69.7 118.5 103.9 5657.8

time series of graphs, S1, S2, S3 and Sy, acquired from existing computer net-
works have been used. Characteristics of these graph sequences are shown in
Table 1, where the size of a graph is defined as the number of its nodes. All four
series represent logical communications on the network. Series S1, Sy and Sy
were derived from data collected from a large enterprise data network, while S3
was collected from a wireless LAN used by delegates during the World Congress
for Information Technology (WCIT2002). The nodes in each graph of S; and So
represent business domains in the network, while in S3 and S; they represent
individual IP addresses. Note that all graph sequences are complete, i.e. there
are no missing nodes and edges in these sequences.

To test the ability of the method described in Section 3 it was assumed,
for each graph in a time series, that (/) is unknown for each node. Then the
prediction scheme was applied and the percentage of correctly predicted nodes
in each graph of the sequence was determined. In some preliminary experiments
it was found out that the optimal size of the time window is M = 5. Hence this
value was used. In Fig. 1 the percentage of correctly predicted nodes for each
graph of sequence S is shown.

To test the method described in Section 4, each time series is divided into two
disjoined sets of graphs. The first set, G1, consists of all graphs ¢g; with index ¢
being an odd number (i.e. graphs g1, g3, gs, . . .), while the other set, Gs, includes
all graphs with an even index ¢ (i.e. graphs g2, g4, ...). First, set Gy is used as
a training set for decision tree induction and G2 serves as a test set. Then Gy
and G2 change their role, i.e. G; becomes the test and G5 the training set. For
each graph, g, in the test set we count the number of nodes that have been
correctly predicted and divide this number by the total number of nodes in g.
The correct prediction rate obtained with this method is also shown in Fig. 1. We
observe that for both methods the correct prediction rate is typically in the range
of 85% — 95%. This is a remarkably high value taking into consideration that
for a two-class classification problem, such as the one considered here, random
guessing would give us an expected performance of only 50%.

Because of space limitations, we only show the results for sequence S;. How-
ever the results for the other three time series are very similar. A summary of
all our experimental results is provided in Table 2, where the correct prediction
rate is averaged over all graphs in a sequence.
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Fig. 1. Correct prediction rates for sequence S; obtained with context-in-time and
within-graph context method.

Table 2. Summary of experimental results.

S1 S2 Sz S
Context in Time (Sec. 3)  92.1 97.2 90.5 95.1
Context within Graph (Sec. 4) 89.5 93.4 96.9 89.4

6 Conclusions

The problem of incomplete knowledge recovery and prediction of the behaviour
of nodes in time series of graphs is studied in this paper. Formally, this task is
formulated as a classification problem where nodes and edges with an unknown
status are to be assigned to one of the classes 'present in’ or ’absent from’
the actual graph. Two different schemes are proposed in order to solve this
classification problem. One of these schemes uses context in time, while the
other is based on context within the actual graph. Both procedures achieve
impressive prediction rates up to about 97% on sequences of graphs derived
from real computer network data. The motivation of this work derives from
the field of computer network monitoring. However the proposed framework for
graph sequence analysis is fairly general and can be applied in other domains as
well.
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Abstract. Motivated by claims to ‘bridge the representational gap be-
tween image and model features’ and by the growing importance of topo-
logical properties we discuss several extensions to dual graph pyramids:
structural simplification should preserve important topological proper-
ties and content abstraction could be guided by an external knowledge
base. We review multilevel graph hierarchies under the special aspect of
their potential for abstraction and grouping.

1 Introduction

Regions as aggregations of primitive pixels play an extremely important role
in nearly every image analysis task. Regional (internal) properties (color, tex-
ture, shape, ...) help to identify them and their external relations (adjacency,
inclusion, similarity of properties,...) are used to build groups of regions having
a particular meaning in a more abstract context. A question is raised in [11]
referring to several research issues: “How do we bridge the representational gap
between image features and coarse model features?” They identify the 1-to-1 cor-
respondence between: salient image features (pixels, edges,...) and salient model
features (generalized cylinders, invariant models,...) as limiting assumption that
makes generic object recognition impossible. It is suggested to bridge and not to
eliminate the representational gap, and to focus efforts on: region segmentation,
perceptual grouping and tmage abstraction.

Connected components form the bases for most segmentations. The region
adjacency graph (RAG) describes the relations of connected regions. However
not all regions of the RAG have the same importance like a dotted line on white
background. In such cases the more important regions are offten close to each
other but not adjacent and adjacency prevents further grouping. We overcome
this problem by letting more important regions (foreground) grow into the non
important regions (background) until the close regions become adjacent and
can be grouped. We address some of these issues in the context of gradually
generalizing our discrete image data across levels where geometry dominates up
to levels of the hierarchy where topological properties become important.

* Supported by the Austrian Science Foundation under grant FSP-S9103-N04.
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We review the formal definition of abstraction (Sec. 2) and the concept of
dual graphs (Sec. 3) including a ‘natural” example of vision based on an irregular
sampling. Image pyramids of dual graphs are the main focus of Sec. 4. Abstrac-
tion in multilevel structures can be done either by modifying the contents of a
representational cell or by ‘simplifying’ the structural arrangement of the cells
while major topological properties are preserved (Sec. 5).

2 Visual Abstraction

By definition abstraction extracts essential features and properties while it ne-
glects unnecessary details. Two types of unnecessary details can be distinguished:
redundancies and data of minor importance. Details may not be necessary in dif-
ferent contexts and under different objectives which reflect in different types of
abstraction. In general we distinguish: isolating abstraction: important aspects
of one or more objects are extracted from their original context; generalizing ab-
straction: typical properties of a collection of objects are emphasized and summa-
rized. idealizing abstraction: data are classified into a (finite) set of ideal models,
with parameters approximating the data and with (symbolic) names/notions de-
termining their semantic meaning. These three types of abstraction have strong
associations with well known tasks in cognitive vision: recognition and object
detection tries to isolate the object from the background; perceptual grouping
needs a high degree of generalization; and categorization assigns data to ideal
classes disregarding noise and measurement inaccuracies. In all cases abstraction
drops certain data items which are considered less relevant. Hence the impor-
tance of the data needs to be computed to decide which items to drop during
abstraction. The importance or the relevance of an entity of a (discrete) descrip-
tion must be evaluated with respect to the purpose or the goal of processing.

Multiresolution hierarchies, image pyramids or trees in general posses the
potential for abstraction. We consider the structure of the representation and
the content stored in the representational units separately. In our generaliza-
tion we allow the resolution cell to take other simply connected shapes and to
describe the content by a more complex ‘language’. The first generalization is
a consequent continuation of the observations in [2] to overcome the limited
representational capabilities of rigid regular pyramids. Since irregular structures
reduce the importance of explicitly representing geometry, topological aspects
become relevant.

3 Discrete Representation — Dual Graphs

A digital image is a finite subset of ‘pixels’ of the discrete grid Z2. The discretiza-
tion process maps any object of the continuous image into a discrete version if
it is sufficiently large to be captured by the sensors at the sampling points.
Resolution relates the unit distance of the sampling grid with a distance in re-
ality. The properties of the continuous object, i.e. color, texture, shape, as well
as its relations to other (nearby) objects are mapped into the discrete space,
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Fig.1. a) Partition of pixel set into cells. b) Representation of the cells and their
neighborhood relations (G, Gr). ¢) Pyramid concept, and d) discrete levels.

too. The most primitive discrete representation assigns to each sampling point a
measurement, be it a gray, color or binary value. In order to express the connec-
tivity or other geometric or topological properties, the discrete representation
must be enhanced by a neighborhood relation. In the regular square grid 4-
or 8-neighborhood have the well known problems in conjunction with Jordan’s
curve theorem. The neighborhood of sampling points is represented by a graph.
Although this data structure consumes more memory space it has several ad-
vantages, among which we find the following: the sampling points need not be
arranged in a regular grid; the edges can receive additional attributes too; and
the edges may be determined either automatically or depending on the data.

The problem arising with irregular grids is that there is no implicit neighbor
definition. Usually Voronoi neighbors determine the neighborhood graph. The
neighborhood in irregular grids needs to be represented explicitly. This creates a
new representational entity: the binary relation of an edge in the neighborhood
graph similar to the concept of relations between observational entities in [7].
Together with the fact that a 2D image is embedded in the continuous image
plane, the line segments connecting the end points of edges partition the image
plane into connected faces which are part of the dual graph (Fig. 1a,b).

4 Pyramids

In this section we summarize the concepts developed for building and using
multiresolution pyramids [10, 15] and put the existing approaches into a gen-
eral framework. The focus of the presentation is a representational framework,
its components and the processes that transfer data within the framework. A
pyramid [15] (Fig. 1c,d) describes the contents of an image at multiple levels
of resolution. The base level is a high resolution input image. Successive levels
reduce the size of the data by a constant reduction factor A > 1.0 while local
reduction windows relate one cell at the reduced level with a set of cells in the
level directly below. Thus local independent (and parallel) processes propagate
information up and down in the pyramid. The contents of a lower resolution
cell is computed by means of a reduction function, the input of which are the
descriptions of the cells in the reduction window.

The number of levels n is limited by A: n < log(image size)/log()). The
main computational advantage of image pyramids is due to this logarithmic com-
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plexity. We intend to extend the expressive power of these efficient structures by
several generalizations. In order to interpret a derived description at a higher
level, this description should be related to the original input data in the base
of the pyramid. The receptive field (RF) of a given pyramidal cell ¢;, RF(c;),
collects all cells (pixels) in the base level of which ¢; is the ancestor.

Content Models and Reduction Functions

In connected component labeling each cell contains a label identifying the mem-
bership of the cell to the class of all those cells having the same label. In this
case the contents of the cells merged during the reduction process can be prop-
agated by simple inheritance: the fused cell ‘inherits’ its label from its children.
In classical gray level pyramids the contents of a cell is a gray value which is
summarized by the mean or a weighted mean of the values in the reduction win-
dow. Such reduction functions have been used in Gaussian pyramids. Laplacian
pyramids [1] and wavelet pyramids [10] identify the loss of information that oc-
curs in the reduced level and store the missing information in the hierarchical
structure where it can be retrieved when the original is reconstructed. These
approaches use one single globally defined model [3] which must be flexible to
adapt its parameters to approximate the data.

In our generalization we would like to go one step further and allow different
models to be used in different resolution cells as there are usually different objects
at different locations of an image. The models could be identified by a name or
a symbol (e.g black, white, isolated etc.) and may be interrelated by semantic
constraints (e.g adjacency etc.), Fig. 4. Simple experiments have been done with
images of line drawings. This research used the experiences gained with a system
for perceptional curve tracing based on regular 2x2/2 curve pyramid [12] and the
chain pyramid [17] in the more flexible framework of graph pyramids. The model
describes symbolically the way in which a curve intersects the discrete segments
of the boundary of a cell and the reduction function consists in the transitive
closure of the symbols collected in the reduction window. The concept works well
in areas where the density of curves is low, although the rigidity of the regular
pyramid causes ambiguities to arise when more curves appear within the same
receptive field. This limitation can be overcome with irregular pyramids [15] in
which we could limit the receptive field of a cell to a single curve.

The content abstraction in this representation has following features:
— models are identified by names', no parameters were used;

— adjacent models have to be consistent (‘good continuation’);
— only one consistent curve is covered in one receptive field;
— this selection process is governed by a few contraction rules (Fig. 4).

The knowledge about the models and in what configurations they are allowed
to occur needs to be stored in a knowledge base [11]. In order to determine which
are the best possible abstractions, the local configurations at a given level of
the pyramid must be compared with the possibilities of reduction given in the

! Discrete names: empty cell, line end, crosses edge, junction etc.
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Algorithm 1 — Graph Pyramid.
Input: Attributed graph G.
1: while { further abstraction is possible } do
2:  determine contraction kernels (CKs),
3:  perform dual graph contraction and simplification of dual graph,
4:  apply reduction functions to compute content of new reduced level,
5: end while

Output: Irregular graph pyramid.

knowledge base. This would typically involve matching the local configuration
with the right-hand sides of rules stored in the knowledge base. Such a match may
not always be perfect, one may allow a number of outliers. The match results
in a goodness of match, which can be determined for all local configurations.
The selection can then choose the locally best candidates as contraction kernels
(CKs) and reduce the contents according to the generic models which matched
the local configuration. The goodness of match may also depend on a global
objective function to allow the overall purpose, task or intention to influence the
selection process.

5 Irregular Graph Pyramids

A graph pyramid is a pyramid where each level is a graph G(V, F) consisting of
vertices V' and of edges F relating pairs of vertices. In the base level, pixels are
the vertices, and two vertices are related by an edge if the two corresponding
pixels are neighbors. This graph is called the neighborhood graph. The content
of the graph is stored in attributes attached to both vertices and edges. In
order to correctly represent the embedding of the graph in the image plane
we additionally store the dual graph G(V, E) at each level. Let us denote the
original graph as the primal graph. In general a graph pyramid can be generated
bottom-up [15] (see Alg. 1).

5.1 1st Iteration: Group Connected Components

The 2" step determines what information in the current top level is important
and what can be dropped. A CK is a (small) sub-tree, the root of which is cho-
sen to survive. Fig. 2a shows the window (Gg) and the selected CK Ng ; each
surrounded by an oval. The codes of the vertices are given in Fig. 4. Selection
criteria (code adjacency of Fig. 4 is ‘yes’) in this case contract only edges in-
side connected components except for isolated black vertices (blobs) which are
allowed to merge with their background, so that support of grouping is dis-
tributed over a large receptive field bridging areas of background [6]. All the
edges of the contraction trees are dually contracted [15]. Dual contraction of an
edge e (formally denoted by G/{e}) consists of contracting e and removing the
corresponding dual edge e from the dual graph (formally denoted by G \ {e}).
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Fig. 2. Broken line.

This preserves duality and the dual graph need not be constructed from the
contracted primal graph G’ at the next level.

Since the contraction of an edge may yield multi-edges and self-loops there is
a simplification step which removes all redundant multi-edges and self-loops (re-
dundant edges). Note that not all such edges can be removed without destroying
the topology of the graph since its removal would corrupt the connectivity! This
can be decided locally by the dual graph since faces of degree two (having the
double-edge as boundary) and faces of degree one (boundary = self-loop) cannot
contain any further elements in its interior, since the original graph is connected.
Since removal and contraction are dual operations, the removal of a self-loop or
of one of the double edges can be done by contracting the corresponding dual
edges in the dual graph. The dual contraction of our example remains a graph
G without redundant edges (Fig. 2b).

5.2 New Category: Isolated Blob

Step 3 generates a reduced pair of dual graphs. The content is derived in step 4
from the level below. In our example, reduction is very simple: the surviving
vertex inherits the color of its son. A new category ‘isolated blob’ is introduced
if a black vertex is completely surrounded by white vertices. This new label allows
the RF to grow into its background and, eventually, close the gap to another
isolated blob. In the only case where the CK contains two different labels, the
isolated vertex is always chosen as surviving vertex.

The result of the second dual contraction is shown in Fig. 3. The selection
rules and the reduction function are the same as in the first iteration. The
isolated blob adjacency graph (IBAG) shows that the gaps between the isolated
blobs of the original sampling have been closed and the three surviving isolated
blobs are connected after two iterations. A top-down verification step checks the
reliability of closing the gap. There are lots of useful properties of the resulting
graph pyramids. If the plane graph is transformed into a combinatorial map
the transcribed operations form the combinatorial pyramid [3]. This framework
allowed to link dual graph pyramids with topological maps which extend the
scope to 3D.
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6 Experimental Result

Fig. 5 shows an example of closing the gaps of a broken line. Connected com-
ponents analysis (CCA) alone creates self loops. Growing isolated blobs into its
background produces vertices of isolated blobs connected by edges corresponding
to the gaps. Fig. 5d shows the corresponding RF' of the isolated blobs, which
represent edgel hypotheses and the neighborhood of isolated vertices a line hy-
pothesis. These hypotheses can be verified for confidence using the hierarchy of
the pyramid. It seems that there are much less concepts working on discrete irreg-
ular grids than on their regular counterparts. How to group connected structures
into an extended RAG has been show before [9]. The many islands of highly split
structures remain isolated in these approaches. We show how to group isolated
blobs or substructures into IBAG if the blobs have a ‘common’ background.

7 Conclusion

We motivated our discussion by the claim to ‘bridge the representational gap’[11]
and to ‘focus on image abstraction’. We first discussed the basic concepts, vi-
sual abstraction and dual graphs in more detail. We then recalled a pyramidal
approach having the potential to cope also with irregular grids. These pyra-
mids have some useful properties: i) they show the need to use multi-edges and
self-loops to preserve the topology; ii) they allow the combination of primitive
operations at one level (i.e. collected by the CK) and across several levels of
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the pyramid (i.e. equivalent contraction kernels [13]); iii) repeated contraction
converges to specific properties which are preserved during contraction; iv) ter-
mination criteria allow abstraction to be stopped before a certain property is
lost. The new category of an isolated blob allowed to group non adjacent regions
based on proximity.
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Abstract. The recent advances in sketch-based applications and digital-pen pro-
tocols make visual languages useful tools for Human Computer Interaction. Gra-
phical symbols are the core elements of a sketch and, hence a visual language.
Thus, symbol recognition approaches are the basis for visual language parsing.
In this paper we propose an adjacency grammar to represent graphical symbols in
a sketchy framework. Adjacency grammars represent the visual syntax in terms
of adjacency relations between primitives. Graphical symbols may be either dia-
gram components or gestures. An on-line parsing method is also proposed. The
performance of the recognition is evaluated using a benchmarking database of
5000 on-line symbols. Finally, an application framework for sketching architec-
tural floor plans is described.

1 Introduction

The field of Human Computer Interaction (HCI) has new emerging interests concerned
about incorporating tools from affine disciplines towards the modelization of innovative
multimodal interfaces. One of these disciplines are sketching interfaces that combine
pattern recognition and document analysis techniques. A sketch is a line drawing image
consisting of a set of hand drawn strokes drawn by a person using an input framework.
Thus, by sketching or calligraphic interface we designate those applications consisting
in the use of digital-pen inputs for creation or edition of handwritten text, diagrams
or drawings. A digital pen is like a simple ballpoint pen but uses an electronic head
instead of ink. We refer to digital ink the chain of points obtained by a trajectory of a
pen movement during touching a dynamic input device. Devices as PDAs or TabletPCs
incorporate such kind of digital-pen input protocols. Interesting applications of digital-
pen protocols are freehand drawing for early design stages in engineering, biometrics
(signature verification), query by sketch in image database retrieval, or augmenting and
editing documents. Sketching with a pen in HCI is a mode of natural, perceptual, and
direct interaction in which the user has also instant feedback. Informally speaking, a
sketch can be seen as a user-to-computer communication unit formulated as a valid

* This work has been partially supported by the spanish project CICYT TIC2003-09291 and
catalan project CeRTAP PVPC.
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sentence of a visual language. A visual language for a diagrammatic notation allows to
combine elements of an alphabet of graphical symbols, i.e. bidimensional patterns, by
means syntactic rules describing valid structural relations among them. According to
that, grammars and parsing are very suitable tools to describe and recognize this type
of patterns. Syntactic pattern recognition methods use formal grammars to describe
bidimensional patterns. To do so, in the literature we can find two major approaches,
namely the use of string grammars as PDL or Plex grammars [ ], or grammars that are
inherently bidimensional as web [2] or graph grammars [3-5].

In this work we propose a syntactic graphical symbol recognition approach in a
sketchy framework. A sketchy framework can be classified depending on different cri-
teria: regarding to input modes, it can be off-line or on-line; the information that is
conveying can be text or graphics; and finally the sketched symbols can be used as free-
hand drawings or gestures. In this paper we focus on the category of on-line graphical
sketches, either used as gestures or symbols in freehand drawings. A sketch recognition
system consists of three major stages: primitive extraction, compound object recogni-
tion, and sketch understanding. In our work, primitive extraction consists in the ap-
proximation of on-line strokes by primitives as straight segments and circular arcs;
compound object recognition is the syntactic stage in which symbols belonging to pre-
defined classes are recognized in terms of an adjacency grammar; and finally sketch
understanding applies semantic rules to the symbol instances recognized in the sketch.
Two symbol categories has been defined one designing elements of a freehand drawing,
and the other a set of gestures delete, rotate, etc., used to edit the drawing elements.
Since in both cases the problem consists in recognizing hand made symbols, the syn-
tactic approach proposed in this work is common for both categories.

This paper is organized as follows: in section 2 we first introduce the adjacency
grammar and afterwards the parsing process is described. Section 3 describes an exper-
imental framework in which the proposed approach has been incorporated. Finally in
section 4 we present the conclusions.

2 Recognition Process

Sketch understanding involves the recognition of graphical symbols that have a mean-
ing in the context where they appear. We can distinguish two major symbol categories:
freehand drawings or gestures. One symbol depending on whether it is drawn in one
of such categories can have different meaning. Thus, in the former symbols are ele-
ments of a diagram vocabulary, and in the latter symbols have associated actions to
modify the diagram. However, the recognition can be formulated in terms of a common
method. Different kinds of grammars have been used in pattern recognition. In graphics
recognition a grammar allows the definition of a symbol by means of a set of primi-
tives and relations among them. In an on-line framework different users do not draw
the same symbol or gesture in the same way. Therefore the recognition method should
be unconstrained to the order of strokes. A particular class of grammars are Adjacency
Grammars[0]. Since its order free nature, they are suitable to model the sketching be-
haviour, whilst classical grammars seem more unnatural due to the sequential organiza-
tion of their production elements.
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2.1 Adjacency Grammars

Adjacency grammars have been used in many disciplines to define symbols. Accor-
ding to the notation of [6] an adjacency grammar is formally defined as a 5-tuple G =
(Vi, Vo, S, P, C) where:

V; denotes the alphabet of terminal symbols.

V,, denotes the alphabet of non-terminal symbols.

S €V, is the start symbol of the grammar.

C'is the set of constraints applied to the elements of the grammar.
P are the productions of the grammar defined as:

Oé_>{617"'7ﬁn}if[‘(ﬁla"wﬁn)

where: o € V,, and all the 8; € {V, UV}, }, constitute a possibly empty multiset of
terminal and non-terminal symbols. I" is an adjacency constraint defined over the
attributes of the 3;.

The symbols 3; can appear in any order, for example, in the following production:
a — {u,v,0} € P we consider all 6 possible permutations of u, v, o as equally valid
substitutions for ov.

An example of a symbol can be seen in Fig. 1(a), the strokes forming the symbol
can be seen in Fig. 1(b) and Fig. 1(c) shows the production that defines the rules to
combine the strokes to form the symbol. Notice that this gesture has two strokes of type
segment and the adjacency constraint between the strokes is of type Intersects.

DELETE - {strokel,stroke2}
\ STROKE 1 / STROKE 2 Intersects(strokel,stroke2)

(a)Gesture Delete (b)Strokes (c)Production

Fig. 1. Example of Gesture.

VOO A

SYMBOL 46 SYMBOL 40 SYMBOL 33 CHAIR SYMBOL 47  PLUG SWITCH

>

SYMBOL 27 SYMBOL 50 CLOSET TABLE SYMBOL 41

TELEPHONE
PLUG LIGHTPOINT

Fig. 2. Graphical symbols in an architectural domain.

In our grammar we can distinguish two levels: lexical, referring to the primitives
extracted from the strokes forming the diagram, and syntactic that refers to the symbols
and gestures. Let us now further describe these two levels.
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SYMBOLS
QUAD - {segmentl,segment2,segment3, }
adjacent(segment1,segment2) & adjacent(segment2,segment3) &

adjacent(segment3, ) & closes{seg 4,segmentl,segment2,segment3)
& perpendicular(segment1,segment2) & perpendicular(segment3 ) &
parallel(segmentl,segment3) & parallel(segment2. 4)

TRIANGLE > {segmentl segment2,segment3}
adjacent(segment],segment2) & adjacent(segment2,segment3)
& closes(segment3,segmentl,segment2)
TABLE > {QUAD}
CHAIR - {QUAD,segmentl}
Contains(QUAD,segment1) & parallel(segment],QUAD)
CLOSET-> {QUAD,segmentl,segment2}
Contains(QUAD,segment]) & Contains(Quad,segment2) &
Intersects(segment segment2)
SYMBOL33 - {QUAD,arc} Contains(QUAD,arc) & closed(arc)
LIGHTPOINT -> {segmentl,segment2,arc}
Contains(segment 1 ,segment2,arc) & segment1,segment2)
PLUG - {arc,segment} Incident(segment,arc) & !close(arc)
TELEPHONEPLUG > {arc segment],segment2} Incident(segment], segment2)
& Perpendicular(segmentl,segment2) & Contains(arc,segment]) &
Contains(arc,segment2) & close(arc).
SWITCH - {arc,segmentl,segment2} Adj 1,segment2) &
Perpendicular(segmentl,segment2) & Incident(segment2,arc)
& close(arc).
SYMBOL46 > {TRIANGLE,segmentl} Contains(TRIANGLE,segment!).
SYMBOLA47 > {SYMBOL46,arc} Contains(arc,SYMBOL46).
SYMBOLS50 > {QUAD,arc} Incident(arc, QUAD).
SYMBOL40 > {arcl,arc2,arc3} Incident(arcl,arc2) & Incident(arc3,arc2)
& close(arc2).
SYMBOL41 > {SYMBOLA40, arcl,arc2} Incident(arcl,SYMBOL40) &
Incident(arc2,SYMBOLA40).
SYMBOL27 > {arc,segment] ,segment2,segment 4}
Incident(segmentl,arc) & Incident(segment2,arc) & Incident(segment3,arc)
& Incident(segment4,arc).

GESTURES

SELECT > {arc} Close(arc).

UNDO > {arc} !Close(arc)

DELETE - {scgmentl,scgment2} segmentl,segment2).
MOVE - {segment}.

ROTATE > {arcl.arc2} Intersects(arcl,arc2).

Fig. 3. The adjacency grammar for gestures and diagram symbols in an architecture framework.

2.2 Lexical Level

This level extracts the primitive elements compounding the sketch. Primitives constitute
the terminal alphabet of the grammar and they encode the strokes introduced to the
system with a digital pen. It is important to distinguish between stroke and primitive.
A stroke is a trajectory of a pen movement during touching a dynamic input device. A
stroke is the minimal unit of user input, represented by a chain of points. A primitive
refers to a simple shape that encodes either a substroke or a multistroke. Therefore, a
primitive is the minimal semantic unit, i.e. a lexical token. Different alphabets of pri-
mitives can be used to encode strokes. Useful examples are polygonal approximations,
dominant curvature points, or basic geometric shapes (squares, triangles, circles).

In this work, strokes are approximated by two types of primitives, namely segment
and arc, i.e. V; = {segment, arc}'. Since a stroke is a sequence of points, primitive
extraction is formulated in terms of a vectorization process. A number of performant
vectorization methods can be found in the literature, for a recent review see [7]. We will
refer to this process as on-line vectorization because dynamic information is also used.
A classical vectorization approach adjusts analytical parameters of segments and arcs
in terms of a minimume-error procedure regarding to static information of image pixels.

! For the sake of clarity we refer as segmentl...segmentn the different instances of the stroke
segment.
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Dynamic information like pressure or speed changes in the pen movement is useful
to detect corner points to divide the stroke. Given a stroke, our on-line vectorization
method consists of two steps. First, corner points are detected using a combination
of static and dynamic information, following the idea proposed in [8]. Thus, we look
for points along the stroke having maximum curvature and minimum speed. The se-
cond step, approximates each substroke between consecutive corner points by a straight
segment or a circular arc in terms of a best fit criterion between the analytical primitive
and the sequence of stroke points.

2.3 Syntactic Level

The syntactic level recognizes graphical symbols by applying a parsing process driven
by an adjacency grammar. It refers to the symbols and gestures forming the diagram.

Adjacency Grammar to Define Graphical Symbols. An adjacency grammar defines
all the symbols and gestures in our framework. Symbols and gestures are formed by
tokens. Grammatical productions specify the structure of a symbol, specifying which
tokens are forming a symbol and the relations among them.

Following the definition explained above of an adjacency grammar our grammar is
defined as a 5-tuple G = (V4, V,,, S, P, C') where:

- V; = {segment, arc} (See section 2.2).

V.. = {QUAD, TRIANGLE, TABLE, CHAIR, CLOSET, SYMBOL33, LIGHTPOINT,
PLUG, TELEPHONEPLUG, SWITCH, SYMBOLA46, SYMBOL47, SYMBOLS0,
SYMBOLA40, SYMBOLA41, SYMBOL27, SELECT, UNDO, DELETE, MOVE, RO-
TATE}. According to the entire grammar shown in Fig. 3, a non-terminal symbol
represents a graphical symbol or a compounding part.

C = {Incident, Adjacent, Intersects, Perpendicular, Parallel, Contains}. See Fig.
4 for a graphical explanation of such constraints.

P are the productions of the grammar defined as: name — {elementsl,...,
elementsn}, constraint, & . . . &constraint,

Where name € V,,, {elementsi,... elementsn} € {V,, UV,},

and {constrainty, ..., constraint,} € C. See Fig. 3

In Fig.5, we can see an example of a grammar describing a symbol. With a grammar
we can define a symbol directly as the composition of tokens or terminal symbols, or
using the decomposition of its parts and defining other non-terminal symbols as a part
of the main symbol. As it can be seen in Fig. 5(c), the symbol telephone-plug can
be defined in two possible ways. One employing all the tokens forming the symbol.

[\ N RN \(\H/‘ - T - @

(a)Incident (b)Adjacent (c)Intersects (d)Perpendicular (e) Parallel (f)Contains

Fig. 4. Examples of constraints.
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TELEPHONEPLUG - {arc, segment1, segment2}
Incident(segment1,segment2) & perpendicular(segment1,segment2)
& Contains(arc,segment1) & Contains(arc,segment2).

T - {segment1, segment2}
‘ Incident(segment1,segment2) & perpendicular(segment1,segment2)

STROKE 1 STROKE 2 STROKE 3 TELEPHONEPLUG - {arc, T} Contains(arc, T).
(a)Symbol (b)Strokes (c)Production

Fig. 5. Symbol Telephone-Plug (a)Symbol (b)Strokes (c)Productions.

The other using the non-terminal symbol T in the definition of the final symbol. Our
grammar to represent symbols can be seen in Fig. 3.

Parsing Process to Recognize Graphical Symbols. Given a sketched symbol, it is
recognized by a parsing process guided by the adjacency grammar describing valid
symbol classes. There exists several references in the literature of bottom-up parsers
for visual languages [9, 10]. These parsers construct the parse tree from the leaves,
corresponding to the input primitives, to the root, consisting in the start symbol. In our
language, the parser is bottom up and is based on precedences between rules.

The parser process works as follows. Given a set of input tokens, it connects them
together with a common root corresponding to a one non-terminal symbol.

Once primitives have been detected in the lexical level a parse tree is hierarchically
constructed by iteratively apply the grammar productions from right to left. First, a set
of primitives are grouped if their kind and constraints matches the right hand part of a
production. Then the left hand symbol is synthesized. This process is iteratively applied
until the starting symbol is reached. Tracing the parse tree from the leaves to the root
the recognized graphical symbols are identified and also its structure.

The success of the recognition process depends on the good specification of the
grammatical rules, and the set of constraints that has been defined.

3 Experimental Results

To test the grammar we have used the CVC online database of symbols®. This database
is formed by 50 models drawn by 21 persons each, divided into two groups, drawing
each person an average of ten instances for 25 symbols. So it results in a database
of about 5000 sketched symbols. The acquisition has been done with a digital pen &
paper protocol using Logitech io Pen [ ! 1]. The purpose of the database is to obtain an
important set of symbols that allows to test some different pattern recognition problems.
In our case as application framework, we use this database on a sketching architectural
application. This project converts a sketched floor plan to a CAD representation consis-
ting of building elements. We have three different kinds of symbols: structures, furniture
and utilities. The input of the system can be done by means of a scanner device or a
digital pen device. The application also allows the option of interact with the system
adding new symbols or by means of gestures. In Fig.6(a), we can see the sketchy input

2 this database can be obtained contacting the authors of the paper.
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of the system, as it can be seen the symbols have distortion, that it makes difficult its
recognition. Figure 6(b) shows the output after the recognition process. In Fig. 6(c) and
Fig. 6(d), we can see how the user interacts with the system by means of a gesture,
rotate, and the result of the recognition of the gesture respectively. More details on this
application framework can be found in [12].

The performance of our grammar has been tested with the on-line instances of the
database. One of the difficulties of these instances is that since they are on-line, we
have to take into account a range of tolerance to allow inherent distortion of strokes. In
Fig.6(a) we can see a sketch drawn in these framework. Some results of the recognition
of symbols with the grammar are shown in the following table:

Table 1. Results with the online database.

SYMBOL3 SYMBOL5 SYMBOL55 SYMBOL57 SYMBOL33 SYMBOL51 SYMBOL52 SYMBOL46 SYMBOL47 SYMBOL27

PERSONI1 100 91 100 82 82 100 80 100 91 100
PERSON2 91 100 100 91 100 100 91 100 100 100
PERSON3 100 100 100 100 85 91 45 100 64 64
PERSON4 100 93 87 73 53 100 27 100 100 36
PERSONS 100 100 100 87 73 100 83 91 100 64
PERSON6 91 82 91 55 45 100 100 91 82 82
BY SYMBOL 97.1 94.6 96.2 83.3 724 98.7 74.1 97 89.4 74.2
TOTAL 87.7

We have chosen instances of the online database from 6 people and apply a gram-
mar that contains the definition of this 10 symbols. The values in the ceils of tablel
refer to the success ratio per person in any symbol. The total number of instances is
approximately 700 instances. As it can be seen not all the symbols have the same per-
centage of success and not the same person have the percentage on all the symbols.
This is related that there are constraints that are more sensitive to distortion than others.
For example, perpendicular and parallel constraint are more sensitive to distortion than
adjacent or intersects. As said in section 2 the success of the grammar is related to a
good specification of the symbols and their constraints.

4 Conclusions

In this paper we have presented an adjacency grammar for on-line parsing diagram-like
sketches in digital pen frameworks. The presented approach follows the classical stages
of a sketching interface: primitive approximation of input strokes, graphical symbol
recognition and interpretation. Two types of symbols have been considered diagram
symbols and gestures. Both are called graphical symbols and are formed by line and arc
segments. The primitive approximation step extracts from input strokes the set of lines
and arc segments considered primitives or tokens. The graphical symbol recognition
process parse these tokens using an adjacency grammar which takes into account the
possible distortions due to the hand-drawn design.
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(a)Original (b)Recognized (c)Gesture Rotate (d)Recognized

Fig. 6. Sketching an architectural floor plan.

The performance of the approach have been evaluated using a database of more than
700 on-line sketched symbols getting an average recognition rate of 87.7%. In addition
to qualitatively illustrate our work an application to sketch architectural floor plans has
been shown.
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Abstract. In this paper, we investigate the use of invariants derived
from the heat kernel as a means of clustering graphs. We turn to the heat-
content, i.e. the sum of the elements of the heat kernel. The heat content
can be expanded as a polynomial in time, and the co-efficients of the poly-
nomial are known to be permutation invariants. We demonstrate how the
polynomial co-efficients can be computed from the Laplacian eigensys-
tem. Graph-clustering is performed by applying principal components
analysis to vectors constructed from the polynomial co-efficients. We ex-
periment with the resulting algorithm on the COIL database, where it
is demonstrated to outperform the use of Laplacian eigenvalues.

1 Introduction

One of the problems that arises in the manipulation of large amounts of graph
data is that of embedding graphs in a low dimensional space so that standard
machine learning techniques can be used to perform tasks such as clustering.
One way of realise this goal is to embed the nodes of a graph on a manifold
and to use the geometry of the manifold as a means of characterising the graph.
In the mathematics literature, there is a considerable body of work aimed at
understanding how graphs can be embedded in manifolds [7]. Broadly speaking
there are three ways in which the problem has been addressed. First, the graph
can be interpolated by a surface whose genus is determined by the number of
nodes, edges and faces of the graph. Second, the graph can be interpolated by a
hyperbolic surface which has the same pattern of geodesic (internode) distances
as the graph [!]. Third, a manifold can be constructed whose triangulation is
the simplicial complex of the graph [12]. A review of methods for efficiently
computing distance via embedding is presented in the recent paper of Hjaltason
and Samet [5].

The spectrum of the Laplacian matrix has been widely studied in spectral
graph theory [1] and has proved to be a versatile mathematical tool that can
be put to many practical applications including routing [2], clustering [9] and
graph-matching [/ 1]. One of the most important properties of the Laplacian
spectrum is its close relationship with the heat equation. The heat equation
can be used to specify the flow of information with time across a network or a
manifold [10]. According to the heat-equation the time derivative of the kernel is
determined by the graph Laplacian. The solution to the heat equation is obtained
by exponentiating the Laplacian eigensystem over time. Because the heat kernel
encapsulates the way in which information flows through the edges of the graph

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 123-130, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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over time, it is closely related to the path length distribution on the graph.
The graph can be viewed as residing on a manifold whose pattern of geodesic
distances is characterised by the heat kernel. For short times the heat kernel is
determined by the local connectivity or topology of the graph as captured by the
Laplacian, while for long-times the solution gauges the global geometry of the
manifold on which the graph resides. In a recent paper [13], we have exploited
this property and have used heat-kernel embedding for the purposes of graph
clustering.

There are a number of different invariants that can be computed from the
heat-kernel. Asymptotically for small time, the trace of the heat kernel [1] (or
the sum of the Laplacian eigenvalues exponentiated with time) can be expanded
as a rational polynomial in time, and the co-efficients of the leading terms in
the series are directly related to the geometry of the manifold. For instance, the
leading co-efficient is the volume of the manifold, the second co-efficient is related
to the Euler characteristic, and the third co-efficient to the Ricci curvature. The
zeta-function (i.e. the sum of the eigenvalues raised to a non-integer power) for
the Laplacian also contains geometric information. For instance its derivative
at the origin is related to the torsion tensor for the manifold. Finally, Colin
de Verdiere has shown how to compute geodesic invariants from the Laplacian
spectrum [3].

In a recent paper McDonald and Meyers [3] have shown that the heat-content
of the heat-kernel is a permutation invariant. The heat content is the sum of the
entries of the heat kernel over the nodes of the graph, which may be expanded as
a polynomial in time. It is closely related to thre trace of the heat kernel, which
is also known to be an invariant. In this paper we show how the co-efficients can
be related to the eigenvalues and eigenvectors of the Laplacian. The resulting co-
efficients are demonstrated to to outperform the Laplacian spectrum as a means
of characterising graph-structure for the purposes of clustering.

2 Heat Kernels on Graphs

In this section, we review the how the heat-kernel is related to the Laplacian
eigensystem. To commence, suppose that the graph under study is denoted by
G = (V, E) where V is the set of nodes and F C V' x V is the set of edges. Since
we wish to adopt a graph-spectral approach we introduce the adjacency matrix
A for the graph where the elements are

1 if (u,v) €FE
A = ) 1
(u,v) {O otherwise (1)

We also construct the diagonal degree matrix D, whose elements are given by
D(u,u) = >, ¢y A(u,v). From the degree matrix and the adjacency matrix we
construct the Laplacian matrix L = D — A, i.e. the degree matrix minus the
adjacency matrix. The normalised Laplacian is given by L =D :LD":. The
spectral decomposition of the normalised Laplacian matrix is
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4
L=040" =3 Mool (2)
=1

where A = diag(A1, Az, ..., A\jy|) is the diagonal matrix with the ordered eigen-
values (0 = A\; < Az < A3...) as elements and @ = (¢1|¢p2|....[¢1|) is the matrix

with the correspondingly ordered eigenvectors as columns. Since L is symmetric
and positive semi-definite, the eigenvalues of the normalised Laplacian are all
positive. The eigenvector ¢o associated with the smallest non-zero eigenvalue Ao
is referred to as the Fiedler-vector. We are interested in the heat equation asso-
ciated with the Laplacian, i.e. ‘96’;‘ = —ﬁht, where h; is the heat kernel and ¢ is
time. The heat kernel can hence be viewed as describing the flow of information
across the edges of the graph with time. The rate of flow is determined by the
Laplacian of the graph. The heat kernel, i.e. the solution to the heat equation,
is a |V| x |V| matrix found by exponentiating the Laplacian eigenspectrum, i.e.
hy = @ exp|—At]@T. For the nodes u and v of the graph G the resulting element

is
14

he(u,v) = Z exp[—Ait]¢i(u)di(v) (3)

When ¢ tends to zero, then hy ~ I — ﬁt, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then hy ~ exp[—tAa]gadd , where )y is the smallest non-zero eigenvalue and ¢, is
the associated eigenvector, i.e. the Fiedler vector. Hence, the large time behavior
is governed by the global structure of the graph.

It is interesting to note that the heat kernel is also related to the path length
distribution on the graph. If P (u,v) is the number of paths of length & between
nodes u and v then

V|2 ik
hi(u,v) = exp[—t] Y  Pi(u,v) I (4)
k=1 ’

Hence, the heat kernel takes the form of a sum of Poisson distributions over
the path-length with time as the parameter. The weights associated with the
different components are determined by the associated path-length frequency
in the graph. As the path-length & becomes large, the Poisson distributions
approach a Gaussian, with mean k and variance k.

The path-length distribution is itself related to the eigenspectrum of the
Laplacian. By equating the derivatives of the spectral and path-length forms of
the heat kernel it is straightforward to show that

V]

Pilu,0) = Y (1= ) éi(u)gi(v) (5)

i=1

The geodesic distance between nodes can be found by searching for the smallest
value of k for which Py (u,v) is non zero, i.e. dg(u,v) = flooryPy(u,v).
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3 Invariants of the Heat-Kernel

It is well known that the trace of the heat-kernel is invariant to permutations.
It is determined by the Laplacian eigenvalues and is given by

N
Z(t) = Z exp[—Ai] (6)

To provide an illustration of the potential utility of the trace-formula, in Figure
1 we show four small graphs with rather different topologies. Figure 2 shows
the trace of the heat kernel as a function of ¢ for the different graphs. From the
plot it is clear that the curves are distinct and could form the basis of a useful
representation to distinguish graphs. For instance, the more bi-partite the graph
the more stongly peaked the trace of the heat-kernel at the origin. This is due
to the fact the spectal gap, i.e. the size of Ay, determines the rate of decay of
the trace with time, and this in turn is a measure of the degree of separation of
the graph into strongly connected subgraphs or “clusters”.

| ﬁ @ e

Fig. 1. Four graphs used for heat-kernel trace analysis.

Four graphs’ trace formula vs the t variable

a
graph

umbbell graph
dumbbell graph

Fig. 2. Heat kernel trace as a function of ¢ for four simple graphs.

Unfortunately, the trace of the heat kernel is limitted use for characterising
graphs since for each value of time, it provides only a single scaler attribute.
Hence, it must either be sampled with time or a fixed time value selected. How-
ever, in a recent paper McDonald and Meyers [2] have shown that the heat-
content of the heat-kernel is also an invariant. The heat content is the sum of
the entries of the heat kernel over the nodes of the graph and is given by
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|V

Q=3 Y )= 3 3 Y epl-Mtlan(wonv) (1)

ueVoeV ueVveV k=1

The heat-content can be expanded as a polynomial in time, i.e.
o0
Q) = Z gmt™ (8)
m=0

By equating the derivatives of the spectral and polynomial forms of the heat
content at ¢t = 0, the co-efficients are given by

V]

b= Y TV s wew )

i=1 ueVveV

In this paper, we will explore the use of the polynomial co-efficients for the
purposes of graph-clustering. To do this we construct a vector B = (qg, ...., q5)"
from the first six co-efficients of the heat-content polynomial To compare our
method with a standard spectral representation we also explore the use of the
vector of leading Laplacian eigenvalues B = (A, Az, ....A7)T as a feature-vector.

4 Principal Components Analysis

Our aim is to construct a pattern-space for a set of graphs with pattern vec-
tors By, k = 1, M, extracted using heat-content co-efficients. There are a num-
ber of ways in which the graph pattern vectors can be analysed. Here, for the
sake of simplicity, we use principal components analysis (PCA). We commence
by constructing the matrix S = [By|Bz|...|Bg|...|Bas] with the graph fea-
ture vectors as columns. Next, we compute the covariance matrix for the ele-
ments of the feature vectors by taking the matrix product C = SS”. We ex-
tract the principal components directions by performing the eigendecomposition
C = Zf\il liuiu? on the covariance matrix C, where the [; are the eigenval-
ues and the u; are the eigenvectors. We use the first s leading eigenvectors (3
in practice for visualisation purposes) to represent the graphs extracted from
the images. The co-ordinate system of the eigenspace is spanned by the s or-
thogonal vectors U = (u1, us, .., us). The individual graphs represented by the
vectors Bg, k =1,2,..., M can be projected onto this eigenspace using the for-
mula B, = UTB,. Hence each graph G}, is represented by an s-component
vector By in the eigenspace.

5 Experiments

We have applied our embedding method to images from the COIL data-base.
The data-base contains views of 3D objects under controlled viewer and lighting
conditions. For each object in the data-base there are 72 equally spaced views,
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Fig. 3. Eight objects with their Delaunay graphs overlayed.

which are obtained as the camera circumscribes the object. We study the images
from eight example objects. A sample view of each object is shown in Figure
3. For each image of each object we extract feature points using the method
of [6]. We have extracted graphs from the images by computing the Voronoi
tessellations of the feature-points, and constructing the region adjacency graph,
i.e. the Delaunay triangulation, of the Voronoi regions. Our embedding procedure
has been applied to the resulting graph structures.

Fig. 4. Heat content as a function of ¢ for 18 COIL graphs.

To commence, we show the heat-content as a function of ¢ for six views of the
the second, fifth and seventh objects from the COIL database shown above. From
Figure 4 it is clear that objects of the same class trace out curves that are close
together. To take this study further, in Figure 5 we plot the six co-efficients
qo, 91, G2, g3, q4 and g5 separately as a function of the view number for the
eight objects selected from the COIL data-base. The co-efficients are relatively
stable with viewpoint. In the left-hand panel of Figure 6 we show the result of
performing PCA on the vectors of polynomial co-efficients. For comparison, the
right-hand panel in Figure 6 shows the corresponding result when we apply PCA
to the vector of leading eigenvalues of the Laplacian matrix B = (g, Az, ..., A7) T
as the components of a feature vector instead. The main qualitative feature is
that the different views of the ten objects are more overlapped than when the
heat-content polynomial co-effients are used.
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Fig. 6. Applying PCA to the heat-content differential co-efficients (left) and Laplacian
spectrum (right).

To investigate the behavior of the two methods in a more quantitative way,
we have computed the Rand index for the different objects. The Rand index is
defined as Ry = CfW where C' is the number of ”agreements” and W is the
number of ”disagreements” in cluster assignment. The index is hence the fraction
of views of a particular class that are closer to an object of the same class than
to one of another class. For the heat-content co-efficients, the Rand index is 0.88
while for the Laplacian eigenvalues it is 0.58.
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6 Conclusion and Future Work

In this paper we have explored how the use of heat-content can lead to a series
of invariants that can be used for the purposes of clustering. There are clearly
a number of ways in which the work reported in this paper can be extended.
These include the use of features which have a direct geometrical meaning such
as the FEuler characteristic, the torsion of the mean and Gaussian curvatures of
the manifold.
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Abstract. A branch-and-bound algorithm for matching Attributed Graphs
(AGs) with Second-Order Random Graphs (SORGs) is presented. We show
that the search space explored by this algorithm is drastically reduced by using
the information of the 2"-order joint probabilities of vertices of the SORGs. A
SORG is a model graph, described elsewhere, that contains 1% and 2™-order or-
der probabilities of attribute relations between elements for representing a set of
AGs compactly. In this work, we have applied SORGs and the reported algo-
rithm to the recognition of real-life objects on images and the results show that
the use of 2"-order relations between vertices is not only useful to decrease the
run time but also to increase the correct classification ratio.

1 Introduction

A Second Order Random Graph (SORG) is a model graph introduced by the authors
that contains 1%-order and 2"-order probabilities of attributes to describe a set of
Attributed Graphs (AGs) [1,2]. Let us consider, as an example, the 3D-object model-
ling and recognition problem. The basic idea is that only a single SORG is synthe-
sised from the AGs that represent several views of a 3D-object. Therefore, in the
recognition process, only one comparison is needed between each object model rep-
resented by a SORG and the unclassified object (view of a 3D-object) represented by
an AG.

SORGs can be seen as a generalisation of FDGs [3,4] and First-Order Random
Graphs [5,6]. Moreover, Bunke [7] presented a model of sets of graphs, called net-
work of models, in which all the graphs are pre-processed generating a symbolic data
structure. In the SORGs, to deal with the 1%-order and 2"-order probabilities, there is
a random variable o (or ;) associated with each vertex w; (or arc g, respectively),
which represents the attribute information of the corresponding graph elements in the
set of AGs. A random variable has a probability density function p; defined over the
same attribute domain of the AGs, including a null value @ that denotes the non-
instantiation of an SORG graph element in an AG.

The distance measure between an AG and a SORG was proposed in [2] for error-
tolerant graph matching. Here, we present a branch-and-bound algorithm which com-
putes exactly this distance measure. This algorithm uses the 2"-order probabilities in
the SORG to prune the search tree.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 131-138, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Formal Definitions of Random-Graph Representation

Definition 1: Attributed Graph (AG). Let A, and A, denote the domains of possible
values for attributed vertices and arcs, respectively. These domains are assumed to
include a special value @ that represents a null value of a vertex or arc. An AG G
over (A,A,) is defined to be a four-tuple G=(X,X,,7,7). Where
i,je{l,...nhi=j} isasetof
arcs (or edges), and the mappings 7,2, A, and 7.:X, >A, assign attribute values

=, ={v, k= 1,...,n} is a set of vertices (or nodes), 5. ={e[,-

to vertices and arcs.

Definition 2: Random Graph (RG). Let Q, and Q, be two sets of random variables
with values in A, (random vertices) and in A, (random arcs), respectively. A random-
graph structure R over (A,A,) is defined to be a tuple (T % .y,,7.,P), where

T ={wk‘k=1,,,,,n} is a set of vertices, 3, ={g,_ ije {L...,n},i;ﬁj} is a set of arcs,

ij
the mapping y :X — Q associates each vertex w, X, with a random variable

a, =7,(w,) with values in A,, and y :3 —Q associates each arc g,ex, With a
random variable ,Bk:%(%) with values in A,. And, finally, P is a joint probability
distribution  P(e,,...,e,,p,....,3,) of all  the random  vertices

o la =y (w),1<i<njand random arcs \3. | B. =y .(g,),1< j<my-
{ i i yw( 1) } {ﬂj‘ﬂj 7/5( kl) J }

Definition 3: Probability of a RG instantiation. Given an AG G and a RG R, the
joint probability of random vertices and arcs is defined over an instantiation that pro-
duces G, and such instantiation is associated with a structural isomorphism

U:G'— R, where G' is the extension of G to the order of R. G’ represents the
same object than G but some vertices or arcs have been added with the null value @
to be u bijective. Let G be oriented with respect to R by the structurally coherent
isomorphism y; for each vertex 4 in R, let a, = y, (u'(w,)) be the corresponding

attribute value in G’, and similarly, for each arc £, in R (associated with random
variable ,Bj) let b, = 7’(»(/[] (gkl )) be the corresponding attribute value in G’. Then the
probability of G according to (or given by) the orientation i, denoted by P, (G‘ u ), is
defined as

P (Glu )=Pr(/\:':1 (o, =al.)A/\j’:1(ﬁj =bj))=p(al,...,an,bl,...,bm) (1)

We define d; to represent a vertex or arc attribute value (a; or b;). Thus, if s is the
number of vertices and arcs, s=m+n, eq. (1) can be rewritten as,

PGl )=p,.,....d,) )

3 Second-Order Random-Graph Representation

If we want to represent the cluster of AGs by a RG, it is impractical to consider the
high order probability distribution defined in the RGs P(a,..., 0, [,,...,3,) (defini-
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tion 2), where all components and their relations in the structural patterns are taken
jointly due to time and space costs. For this reason, some other more practical ap-
proaches have been presented that propose different approximations [1,4,5,6]. All of
them take into account in some manner the incidence relations between attributed
vertices and arcs, i.e. assume some sort of dependence of an arc on its connecting
vertices. Also, a common ordering (or labelling) scheme is needed that relates verti-
ces and arcs of all the involved AGs, which is obtained through an optimal graph
mapping process called synthesis of the random graph representation. We showed in
[1] that all the approximations in the literature of the joint probability of an instantia-
tion of the random elements in a RG (eq. 1) can be described in a general form as
follows:

n m n-1 n n_m m-l m
Pk(qlu):p(alman:blwbm):Hpi(ai)Hpi(bi)HH’Tj/(anaj)I ” I'z/(ai’bf)HH’;f(bi’bi) 3)
i=l =l =l j=itl = j= =l j=itl
where p; are the marginal probabilities of the s random elements y , (vertices or arcs)
and 7, are the Peleg compatibility coefficients [9] that take into account both the
marginal and 2"-order joint probabilities of random vertices and arcs.
According to eq. (2), we can generalise the joint probability as,
PR(G‘IU)zp(dl’”ds)znpi(di)l_[Hrij(di’dj) “4)
i=1 i=l j=i+l
and define the Peleg coefficient,
Dj (di > dj )
D; (di)p j d J
The Peleg coefficient, with a non-negative range, is related to the “degree” of de-
pendence between two random variables. If they are independent, the joint probabil-
ity, p;;, is defined as the product of the marginal ones, thus, r; = 1 (or a value close
to 1 if the probability functions are estimated). If one of the marginal probabilities is

null, the joint probability is also null. In this case, the indecisiveness 0/0 is solved
as 1, since this do not affect the global joint probability, which is null.

r,(d,.d,)= )

4 Distance Measure Between AGs and SORGs

The distance measure presented in this section provides a quantitative value of the
match between an AG G (data graph) and a SORG S (model graph) similar to the one
presented in [2]. It is related to the probability of G according to the labelling func-

tion x:G — S, denoted P(G‘ ﬂ) in eq. (4). We may attempt to minimise a global
cost measure C of the morphism g in the set H of allowable configurations, by tak-
ing the cost as a monotonic decreasing function of the conditional probability of the
data graph given the labelling function, C = f (P(G| y7i )) With some steps depicted
in [2] we arrive to the final expression

C(G,u)z—(s—2)gc;(di)+§ iqz,j(di’dj) (6)

i=1 j=i+l
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where first-order and second order costs are given by

Cl@)=Cost(p(d))  C},(d.d,)=Cosi(p, ,d.d)) ™
and the function Cost(Pr) yields a bounded normalized cost value between 0 and 1
depending on the negative logarithm of a given probability Pr and parameterised by a
positive constant K,,.€[0,1], which is a threshold on low probabilities that is intro-
duced to avoid the case In(0), which would give negative infinity. This is,

—In(Pr) .
(Pr) if Pr>K,,
—In(X;,)
Cost(Pr)= (8)
1 otherwise

Once a cost measure C is defined, a distance measure between an AG and a SORG
and the optimal labelling * are defined respectively as

d=min {C(Glu)y  and  =argmin {C(Glu)} ©)

5 Algorithm for Computing the Distance Measure

The distance and the optimal morphism between an AG G and an SORG F are calcu-
lated by an algorithm for error-tolerant graph matching. Our approach is based on a
tree search by A* algorithm, where the search space is reduced by a branch and
bound technique. The algorithm searches a tree where the nodes represent possible
mappings between vertices of both graphs and branches represent combinations of
pairs of graph vertices that satisfy the labelling constraints. Hence, the paths from the
root to the leaves represent allowed labellings f.

The distance measure has been theoretically defined such that both graphs are ex-
tended with null elements to have the same number of elements and to be complete.
Nevertheless, in practice, our algorithm only needs the SORG to be extended with
one null vertex, because the different permutations of the null vertices are regarded as
equivalent labellings. Thus, the AG spurious vertices are possibly matched with this
unique null SORG vertex (®g) and hence the mapping is not forced to be injective.
On the other hand, the SORG graph elements that remain unmatched when arriving at
a leaf are considered to be matched with null AG vertices vq or null AG arcs €g.
Consequently, a final cost of deleting these elements may be added to the cost of the
labelling in the leaves of the search tree. Nevertheless, if a sub-graph isomorphism
from an AG to a SORG is looked for, then it is not needed to match all the SORG
vertices with an AG vertex (null or not) and this deleting cost has not to be computed.
This is the case of our application in Section 5.

In general, solving a branch and bound problem requires a branch evaluation func-
tion and a global evaluation function. The former assigns a cost to the branch incident
to a node N of the tree, which is the cost of the new match (or pair) appended. The
latter is used to guide the search at a node N and refers to the cost of the best com-
plete path through N (i.e. including the pairs of vertices already matched when arriv-
ing at N). The cost of a labelling fis given by the value of the global evaluation func-
tion in a leaf of the search tree.
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Each node N of the search tree at level p>0 is described by a collection of pairs of
vertices of the graphs, N = {(v,.,a)q )}, where j=1.2,..., p correspond to the indices of

the vertices v; in the AG and q; are the distinct indices of the vertices ®y; in the SORG
such that f(, )= . Moreover, we define the sets y = JL"] — } and
i qi ) seees Vo

N, = @@, } of vertices that have already been matched between both graphs,

and also the sets A7, ={v v,}and pr = {a)j‘wj e Nw} of vertices that have

p+l? p+2""’ n
not been matched yet. Assume that NZ{("n%, )7(\,2,60 2)_,_,(\,[7,% )} indicates the
unique path from the root to a tree node N and 7 = {(v,,wq (vz,a) ) (V,uw )} indi-
cates the unique path from the root to a leaf T. The vertices of ps  in each node N are
explored using the order imposed by the costs (! (Vp ,a)j) being w,eM,

The branch evaluation function K depends on the cost of the new match between
vertices, the cost of all the arcs related to these two vertices that involve vertices from
N, and N, and the 2" order costs referring to these same vertices. Thus, the cost
assigned to the branch incident to N is given by

Ky )%w{( )+ZC( by 4C (w%,,,,,)}:Zé(v,,,z,az,,,aa&) (10)

The global evaluation function [*(N) at a node N of level p is defined as the cost
g"(N) of an optimal path from the root to the node N plus the cost *(N) of an opti-
mal path from the node N to a leaf T = {(vi’wq )‘ i= 1,2,,,,,71} constrained to be reached
through the node N:

* * * 2 *
l*(N)zg (M+h (N) where g(]\’)sz(\;.,ag[i) and } (N)—mm K(vl,w) (11)
= i=pH

where f denotes a feasible path from N to T.
On the other hand, the global evaluation function /*(N) is unknown in an inner

node N, since ;*(N) is unknown and can only be approximated by a consistent lower-

bounded estimate.
For that purpose, let K'(Vfaw,-) be the cost of adding a pair of vertices to N, where

v.eM, and w,eM, , defined as

Vl,a} —@—3{ Vs +ZC ) ( .w"‘%j)j—‘rici(‘%"{v’a}’al)l‘) (12)

Then, for each unmatched vertex v,eM,,a corresponding vertex w, €M, can

be associated such that the cost K '(vi,a)j) is minimised.

Finally, the heuristic function [(N ( ) that estimates /" (N ) in a node N is given by
I(N)=g (N)+h(N) where , (\y_ z min {K'(.0,)} 1 2 consistent lower

i=p+

bounded estimate of 4*(N).
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The algorithm to compute the distance measure ¢ and the corresponding optimal
labelling S between a given AG and a given FDG only invokes the following re-

cursive procedure TreeSearch at the root node.

Procedure TreeSearch(G,F,f,g*,vﬂ<i,fwg

Input parameters: G and F: An AG and a SORG

f: Optimal path (labelling) from the root to the current node
g*: Minimum value from the root to the current node

v,: Current AG vertex to be matched

Let W be a sequence of w, of F ordered by Clhg,w)

For each vertex w, in W not used yet in f or we do
K:=Branch-Evaluation-Function(G,F, f, v, w,)
h:=Bound-Estimate-Function (G, F, fU{f (v,)=w,})
:=g*+K+h ; {Heuristic function of 1%*}
If I<d, then {partial cost < best distance}
If I<n then {some vertex still not matched}
TreeSearch(G,F, fU{f(v,)=w},g*+K, v, d, £, )
Else {all AG vertices have been matched}
d,:=1;
£ =fU{f(v,)=w}

End-procedure

6 Recognition of Real-Life Objects on Images

We present a real application to recognise coloured objects using 2D images. Images
were extracted from the database COIL-100 from Columbia University
(www.cs.columbia.edu/CAVE/research/ softlib/coil-100.html). It is composed by 100
isolated objects and for each object there are 72 views (one view each 5 degrees).
Figure 1 shows some objects at angle 100 and their segmented images with the adja-
cency graphs. These graphs have from 6 to 18 vertices and the average number is 10.
The test set was composed by 36 views per object (taken at the angles 0, 10, 20 and
so on), whereas the reference set was composed by the 36 remaining views (taken at
the angles 5, 15, 25 and so on). We compared SORGs to 3 other classifiers. The
probabilistic models First-Order Random Graphs (FORGs) [6], Function-Described
Graphs (FDGs) [4] and the Nearest-Neighbour classifier (AG-AG) with the edit-
operation distance between graphs as measure of similarity.

We made 6 different experiments in which the number of clusters that represents
each 3D-object varied. If the 3D-object was represented by only one cluster, the 36
AGs from the reference set that represent the 3D-object were used to synthesise the
SORGs, FORGs or FDGs. If it was represented by 2 clusters, the 18 first and con-
secutive AGs from the reference set were used to synthesise one of the SORGs,
FORGs or FDGs and the other 18 AGs were used to synthesise the other ones. A

Fig. 1. Some objects at angle 100 and the segmented images with the AGs
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similar method was used for the other experiments with 3, 4, 6 and 9 clusters per 3D-
object.

Ratio of classification Run time per comparison

[13-] 45 \
b R — ‘ '
oo e | | Y
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Number of clusters for 3D-object ‘Nurbor of olusiets for SGD-obj::ct

Fig. 2. (a) Ratio of recognition correctness (b) run time spent in the classification.
SORG:—#—; FDG:—m—; FORG:— & —; AG-AG:—¥—

Figure 2.a shows the ratio of correctness of the four classifiers varying the number
of clusters per each object. When objects are represented by only 1 or 2 clusters, there
are too much spurious regions (produced in the segmentation process) to keep the
structural and semantic knowledge of the object. For this reason, different regions or
faces (or vertices in the AGs) of different views (that is, AGs) are considered to be
the same face (or vertex in the AGs). The best result appears when each object is
represented by 3 or 4 clusters, that is, each cluster represents 90 degrees of the 3D-
object. When objects are represented by 9 clusters, each cluster represents 40 degrees
of the 3D-object and 4 AGs per cluster, there is poor probabilistic knowledge and
therefore the distance costs on the vertices and arcs are coarse. Figure 2.b shows the
average run time spent to compute the classification. When the number of clusters per
object decreases, the number of total comparisons also decreases but the time spent to
compute the distance increases since the structures that represent the clusters
(SORGs, FORGs or FDGs) are bigger.

When the best classification is reached, FDGs have less run-time than SORGs but
lower recognition ratio. This is due to the fact that the algorithm to compute the dis-
tance in the FDG classifier prunes harder the search tree than the SORGs since it uses
a qualitative information of the 2"-order relation [3]. Therefore, the time spent to
search the best labelling decreases but the optimal one may not be found.

7 Conclusions and Future Work

We have presented an algorithm to compute the distance measure between AGs and
SORG:s. It is based on a well known algorithm that uses the branch-and-bound tech-
nique and the distance between vertices and arcs as the heuristic function to prune the
search tree. Due to the fact that SORGs keep 2"-order probabilities between vertices,
we incorporate this knowledge into the heuristic function to reduce harder the space
explored by the algorithm.

The experimental results show that, in the FDG classifier, the use of the antagon-
ism relations between vertices, is useful not only to decrease the run time of the
matching algorithm but also to increase the recognition ratio (thanks to a better mod-
elling of the set of objects). Nevertheless, if the 2™-order probabilities are kept in the
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model as in the case of the SORGs, the classification ratio increases but the run time
also increases.

We are defining a matching algorithm that computes a sub-optimal distance be-
tween AGs and SORGs in polynomial cost. It is based on the distance between
cliques that uses 2"-ordre probabilities between the external vertices of both cliques.
This distance will be useful to select some SORG candidates. Thus, the distance algo-
rithm explained in this article with exponential cost will be only applied to this few
candidates.
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Abstract. In pattern recognition, median computation is an important technique
for capturing the important information of a given set of patterns but it has the
main drawback of its exponential complexity. Moreover, the Spectral Graph
techniques can be used for the fast computation of the approximate graph
matching error, with a considerably reduced execution complexity. In this pa-
per, we merge both methods to define the Median Spectral Graphs. With the use
of the Spectral Graph theories, we find good approximations of median graph.
Experiments on randomly generated graphs demonstrate that this method works
well and it is robust against noise.

1 Introduction

Attributed Graphs (AGs) has been used to solve computer vision problems for dec-
ades and in many applications. Some examples include recognition of graphical sym-
bols, character recognition, shape analysis, 3D-object recognition and video and im-
age database indexing. In these applications, AGs represent both unclassified objects
(unknown input patterns) and prototypes. Moreover, these AGs are typically used in
the context of nearest-neighbour classification. That is, an unknown input pattern is
compared with a number of prototypes stored in the database. The unknown input is
then assigned to the same class as the most similar prototype.

Nevertheless, the main drawback of representing the data and prototypes by AGs is
the computational complexity of comparing two AGs. The time required by any of the
optimal algorithms may in the worst case become exponential in the size of the AGs.
The approximate algorithms, on the other hand, have only polynomial time complex-
ity, but do not guarantee to find the optimal solution.

Moreover, in some applications, the classes of objects are represented explicitly by
a set of prototypes which means that a huge amount of model AGs must be matched
with the input AG and so the conventional error-tolerant graph matching algorithms
must be applied to each model-input pair sequentially. As a consequence, the total
computational cost is linearly dependent on the size of the database of model graphs
and exponential (or polynomial in subgraph methods) with the size of the AGs. For
applications dealing with large databases, this may be prohibitive.

To alleviate these problems, some attempts have been made to try to reduce the
computational time of matching the unknown input patterns to the whole set of mod-
els from the database. Assuming that the AGs that represent a cluster or class are not
completely dissimilar in the database, only one structural model is defined from the
AGs that represent the cluster, and thus, only one comparison is needed for each clus-
ter.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 139-146, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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There are two different methodologies to represent the cluster in the literature de-
pending on whether they keep probabilistic information in the structure that represent
the cluster of AGs or not. In the probabilistic methods, the models (clusters) are de-
scribed in the most general case through a joint probability space of random variables
ranging over graph vertices and arcs. They are the union of the AGs in the cluster,
according to some synthesis process, together with its associated probability distribu-
tion [1,2,3]. In the non probabilistic methods, clusters are represented by an AG
(which might not be in the cluster) or they are represented by a network of models [4].

Spectral graph theory is concerned with understanding how the structural proper-
ties of graphs can be characterised using the eigenvectors of the adjacency matrix of
the AGs or the Covariance matrix [5]. Although spectral methods have been used to
address the segmentation or correspondence matching problems, there has been less
work on using spectral characteristics to perform pattern analysis on AGs. First, an
approximate solution to the graph matching problem was presented in [6,7,8] for both
undirected and directed AGs based on the eigendecomposition of the adjacency ma-
trix of both graphs. The method was restricted to AGs with only one positive attribute
on the nodes and arcs. Recently, AGs with complex numbers as attributes on the
nodes or arcs were allowed in the method presented in [9,10], rather than purely real
entries.

Given a set of AGs, the median is defined as the AG that has the smallest sum of
the distances to all AGs in the set [11]. We can distinguish between set median and
generalised median graphs. The difference lies in the space of AGs where the respec-
tive median is searched for (formal definitions in section 5).

In this paper, we first define a method to find a sub-optimal labelling between AG
vertices based on the correlation between the modal matrices obtained from the adja-
cency matrices of both AGs (section 4). Moreover, we introduce the novel concepts of
set and generalised-median spectral graphs (section 5). While the computation for the
set-median spectral graphs is exponential in the size of the input graphs, but polyno-
mially bounded by the number of those graphs, the complexity of computing general-
ised-median spectral graphs is exponential in both the number of input graphs and
their size. For this reason, and with the aim of reducing the exponential complexities,
we develop an incremental algorithm in section 6 to synthesise an approximation of
the generalised-spectral graph in polynomial complexity respect the number of AGs.
Experiments conducted on median spectral graphs in section 7 demonstrate the advan-
tage of this representation and the ability of our synthesis method to find approximate
generalised-median spectral graphs.

2 Formal Definitions of Attributed Graphs

An attributed graph G over the domain of the attribute vertices and arcs (A ,A ) with
an underlying graph structure H = (sze)’ where z, ={Vk ‘ k= 1,___’,1} is a set of

vertices (or nodes) and ¥, ={eij i,je {1’“_371},,';&]'} is a set of arcs, is defined to be a

pair (V,E) where ¥ = (% ,y,) is an artributed vertex set and E =(X,,y,) is an attrib-
uted arc set. The mappings y,:¥ — A, and y,:X — A, assign attribute values to
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vertices and arcs, respectively, where A_=A_ u{®} and A, = A, u{dD}- D (degA,
and @ ¢ A, .) represents a null value of a graph element.

An adjacency matrix A of an attributed graph G of order n is a n X n matrix whose
element with row index i and column index j is:

A(i,j):{7e(eij) if eeX,

() otherwise

3 Spectral Decomposition of Matrices

Spectral decomposition of matrices: The spectral decomposition of matrices is ob-
tained as follows. From matrix A to hand, we can calculate the eigenvalues A = (A,,
A2, ..., Ay) by solving the equation ‘ A—/U‘ =(0. Moreover, the modal matrix (also

called eigenvector matrices) U = (u;| uy|... u,), composed by the eigenvectors associ-
ated to the eigenvalues A, is obtained by solving the system of equations Au,=Au,,
were w is the eigenmode index and the order of the eigenvectors is decided according
to the decreasing magnitude of the eigenvalues, i.e. A, = A, =... =A,. We emphasise
that in the case that the initial matrix is not symmetric, the elements of the modal
matrix are complex numbers but in the case that the initial matrix is symmetric, the
elements of the modal matrix are real numbers. The original matrix A can be recov-
ered by its eigenvectors and eigenvalues, A = U diag(A) U'. See [12] for more de-
tails.

Correlation between matrices: Given a pair of matrices A = (a;| a,|... a,), and B =
(by] by|... b,) of nXn rows and columns, the correlation I" between them is defined as,

—max Y b, 1)
I(4,B) mjixgalby(l)

4 Error-Tolerant Graph Matching

From this section to the rest of the paper we consider that the domain of the vertices
and arcs, A, is the set of the non-negative numbers. The null attribute, @, is repre-

sented by zero. And also, nodes have no attributes, that is, A, :{q>}. With this condi-

tions, the adjacency matrix totally characterises the AGs and it is composed by non-
negative numbers.

4.1 Distance Between Attributed Graphs Given a Labelling

Let G' = (VI,EI) and G2 = (VZ,Ez) be two AGs with n nodes. A global cost Cf can
be associated with each structurally correct labelling between vertices of both graphs
£ 2! —» %2, and the distance measure between them is defined as the minimum of

all such costs [13]:
d(G',G*)= min {c.lc.¢)] 2
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We call the optimal labelling as the labelling that gives the minimum cost, that is,
the one used to compute the distance. Finally, the global cost C/_L2 is defined as the

difference of the attribute values as follows,

€,(6.67)=3 3 (el 72let oot ) )

i=l =1

If A, and 4, are the adjacency matrices of the AGs G' and G?, the global cost

Cf,,2 defined in (2) can be reformulated as follows using a permutation matrix P [6]:

2
C.=|PAuP" 4, “
where P represents the isomorphism f 2 that is,
. 2(1\_ .2
P(i,j)={1 i )=y (5)
0 otherwise

and || . || is the Euclidean norm,

Note that due to f°* has to be defined bijective, P has only one 1 in each row and
column. Thus, the problem of finding the optimal labelling is reduced to the problem
of finding the permutation matrix P which minimises C e We show in the next sec-

tion how to find the labelling f* using the spectral graph theory.

4.2 Optimal Labelling Between Attributed Graphs
u;Hui‘) and U, = (ulzu

ces A, and A, Consider that the eigenvectors u; have been enumerated depending

Let U, = (Mll 22“”2‘) be the modal matrices of the adjacency matri-

on the value of their eigenvalues, that is, A, = A, =... =A,.

If we want to find the best labelling f* between G1 and G* using the spectral
graph theory, we need to project or find a relation between the vertices of the AGs
and the spectral decomposition of their adjacency matrices. To do so, we define arbi-
trarily the bijective functions 4’ and %’ such that p! vl —u and p*:y* —y” and also

the diagonal matrices H' and H* that represent these isomorphisms.

2 il s, @
nlyy Ly vty s
W - u! up - W ) }

1 1
v — Uy ug — v Eigen decomp. AU 2
Labelling [

Eigen decomp.
[ T ut v AU }

Fig. 1. a) Concatenation of the labelling function between vertices. b) Scheme of the computa-
tion of the labelling.

Thus, the function f? is defined as the concatenation /% = h' - ¥ . h*" where y*
is a bijective function between the modal matrices U, and U (figure 1.a). More-

over, the matrix P can be redefined as,
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P=H'MH” (6)
where M represents the isomorphism 7, that is,
, 12(1Y_ 2
o= 7 7= )
0 otherwise

As demonstrated in [6], the global cost Cfl_2 is minimised when the correlation T’

between the absolute value of the modal matrices UG] and UGz is maximised. Then,

the permutation matrix M has to be defined such that this correlation is maximised.
We can use an algorithm with exponential cost, i.e., the A*, and get the optimal label-
ling or choose an algorithm with polynomial cost and get a sub-optimal labelling. For
instance, applying the Hungarian method to UiGIUiGZT matrix. Figure 1.b shows the

basic scheme the method.

4.3 Example of Graph Matching by Spectral Graphs

Assume that we want to compute the distance measure between G’ and G and decide
the optimal labelling between their vertices. Figure 2 shows the AGs G' and G* and
their adjacency matrices. Lines without arrows represent undirected arcs (the attribute
in both directions of the edge is the same).

@2© = 8 0021 2 3 003 1 4 8
e (4 gm0 2N 2 0 4 3 7 30 25 6
@5 @ ],—\ -4 52 A =L -t [; 5‘ 26 .= i [ll l] :1,
56 7 ®T4@ @ ;5 - 2(60 $ 6 le o
-

Fig. 2. The graphs G' and G* and their adjacency matrices.

The obtained eigenvalues and eigenvectors are

A7 =(14.794, —0.346, —1.974, —3.656, —8.816)A° =(15371, 0.036, —1.368, —4.255 —9.783)

0268 —0.720 -0.604 -0.204 -0.041 -0499 —-0.076 0578 -0.337 0.543
0496 -0.064 0499 -0.494 -0.505 -0.473 -0.199 -0.374 0.683  0.359
U% =|0390 0597 -0408 —0452 0344 |U% =|-0264 0742 —-0489 —0328 0.177
0.487 0250 -0269 0.648 —0.453 0374 —0.575 -0429 —-0.512 —0.285
0.539 -0.239 0380 0297 0.646 -0.562 0269 0317 0220 -0.679

Thus, the U—qur matrix and the permutation matrix obtained by the Hungarian

method is,
0.6308 0.6516 0.9761 0.8916 0.6103 0 01 00
0.9838 0.9542 0.6766 0.8353 0.9077 1 00 0 0
UyUg,=| 08174 0.8900 09567 0.9959 0.8442|P={0 0 0 1 0
0.8847 0.9881 0.7411 0.9045 0.8788 01 0 0 0
0.9603 0.8813 0.7200 0.8405 0.9938 0 0 0 0 1
The labelling that the matrix P represents is f2(1)=3, f%(2)=1, f(3)=4, f*(4)=2

and f2(5)=5 and the value of the global cost (3) is: 6.
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5 Median Spectral Graphs

Let Y be the set of all AGs that can be constructed using the domains of the attribute
vertices and arcs (Av,Ae)' Given a set of AGs S={GI,G2,...,GZ}, the generalised me-

dian graph G and the set median graph G of S are defined in [11] by
— _ . Z ; d A _ . Z ;
G—argr(rj_lel?;d(G,G) an G—argr(r}elgl;d(G,G) (8)

Both the generalised median graph and the set median graph minimise the sum of
distances to all input graphs and the only difference lies in the graph space where the
median is searched for. The generalised median is the more general concept and,
therefore, usually a better representation of the given patterns than the set median.
Notice that G is usually not a member of S.

We extend the median graph concepts to the spectral theory. Let K be the set of all
modal matrices. Given a set of modal matrices L={ vl U}, we define the gener-
alised median eigenmode T and the set median eigenmode U of L by

U =arg rgf]}f:r(u,u’) and (7 = arg rry@g}ZZ:F(U U') 2
i=1 i=1

The generalised median eigenmode and the set median eigenmode maximise the
sum of the correlations to all modal-matrices in K or L. Nevertheless, the computation
of both medians is drastically different. While U is obtained in polynomial time re-
spect the number of elements, U is obtained in exponential time.

6 Synthesis of the Generalised Median Eigenmode

Given a set of AGs S={ GI,GZ,...,GZ}, which are initially supposed to belong to the
same class, we do not, in general, have any way of synthesising the generalised me-
dian eigenmode U that represents the ensemble unless we can first establish a com-
mon labelling of their vertices. We would like to choose the common labelling so as
to minimise the measures of dissimilarity between the given AGs and so to maximise
the correlation between the median eigenmode U and the eigenmodes extracted from
the adjacency matrices L={U’,U’,...,U"}. This global optimisation problem does not
lead to a computationally practical method for choosing the labelling, because there
are too many possible orientations to consider, especially when the number and order
of the AGs is high.

Two different methods of synthesising a median from a set of elements are used in
the literature [2]; the incremental method and the hierarchical method. Therefore, two
sub-optimal methods to synthesise U could be defined. In the former, U is updated
by the AGs, which are sequentially introduced. The advantage of this method is that
the learning and recognition processes can be interleaved, i.e. the recognition does not
need to wait for all the input instances, but is available after each AG has been proc-
essed. The main drawback of this incremental approach is that different median ei-
genmodes can be synthesised from a set of unlabelled AGs depending on the order of
presentation of the AGs. To infer some unique U, a hierarchical method can be de-
fined, which is carried out by successively merging pairs of AGs with minimal dis-
tance. The drawback here is that the full ensemble of AGs is needed to generate the
median eigenmode. In the experiment results, the median spectral graphs have been
obtained by the incremental synthesis.
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Algorithm 1 computes the median spectral graph of a set of AGs using an incre-
mental method. It uses three main procedures. The first is the Eigen_Decomposition
that obtains the eigendecomposition of the adjacency matrix of an AG (section 3).
The second is the matching algorithm M that finds a sub-optimal labelling between
spectral graphs (section 4.2). An the third procedure, Median_Graph, updates the
median graph. We have to mention that the median function is not transitive, for this
reason, the procedure has to keep the information of an AG that is the addition of all
the AGs used to compute the median.

Algorithm 1: Incremental-synthesis-of-AGs

Inputs: A sequence of AGs S={G,G? ...,G?}, over a common domain.

Output: The eigendecomposition that represents the median graph of S.

Begin

{(7,71}; Eigen_Decomposition(G') {G is composed by only G'}
for k:==2 tozdo
let f¥:G* — G be the labelling found by M(U",U)
G := Median_Graph (G ,G*f)
{[7, Z}:= Eigen_Decomposition (G )
end-algorithm

7 Experimental Results

In order to examine the behaviour of the new representation, we performed a number
of experiments with randomly generated AGs. We randomly generated 10 initial
complete AGs, one for each model. From these AGs, the reference and test sets of 10
AGs each were derived by modifying the attribute value of their arcs applying a gau-
sian noise. Figure 3 left shows the ratio of recognition when the noise is increased
(Standard deviation from 1 to 14) with 3 different methods: a) eig2eig: Comparing
graphs using their eigenvalues (section 4). b) eig2clus: Comparing graphs to median
graphs using eigenvalues (section 5). Approximate median graphs were obtained by
the algorithm sketched in section 6. c): arg2arg: Comparing graphs using the edit
operation matching algorithm described in [13]. Only the substitution edit operation
has been considered since we want to find the best bijective labelling between vertices
of both graphs.
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Fig. 3. Recognition ratio and run time in seconds of randomly generated attributed graphs.

It is interesting to emphasize that the ratio of recognition of the spectral methods is
only slightly lower than the edit operation methods although the cost of the first ones
are polynomic and the second ones are exponential. Considering the spectral methods,
we have to stress that in the eig2clus method, the run time (figure 3 right) of the rec-
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ognition depends only on the number of clusters but not on the number of AGs per
cluster. For this reason, in these experiments, the run time of the eig2clus method
were 10 times lower than the eig2eig method. Moreover, when the AGs in a cluster
are very different (the noise is high), the eig2clus method keeps the structural infor-
mation of the cluster and for this reason the recognition ratio obtains the best results.

8 Conclusions and Future Work

In this paper, we have merged the median computation with the spectral graph theo-
ries to define the Median Spectral Graphs. The aim of this new structure is to obtain
the advantage of the structural pattern recognition but with a polynomic computa-
tional cost. By decomposing the adjacency matrices of the graphs in their eigenvec-
tors and eigenvalues, we obtain a suboptimal labelling in polynomic cost. Experimen-
tal results show that this scheme is useful to keep the structural information of the
graphs of each class when they are synthesised in only one median structure. As a
future work, we have to define the hierarchical synthesis and test our new methods in
a real application.
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Abstract. The interpretation of natural scenes, generally so obvious
and effortless for humans, still remains a challenge in computer vision.
We propose in this article to design binary classifiers capable to recog-
nise some generic image categories. Images are represented by graphs of
regions and we define a graph edit distance to measure the dissimilarity
between them. Furthermore a feature selection step is used to pick in the
image the most meaningful regions for a given category and thus have a
compact and appropriate graph representation.

1 Introduction

How can one construct computer programmes in order to understand the content
of scenes? Such programmes would satisfy needs in image retrieval and computer
vision, and could possibly be applied to a wide range of areas, including security,
digital libraries and web searching. We propose in this article to design binary
classifiers capable to recognise some generic image categories.

Previously, image classification has been performed by using directly support
vector machines on image histograms [1] or hidden Markov models on multi-
resolution features [2]. These methods do not take into account that human
description of an image content is rarely global but often specific to an image
part. To include local information, attributed relational graphs [3] and image
blocks [4] were proposed. Such approaches rely on the ability of the classifiers
to distinguish between complex features, so they are prone to over-fit when the
concept to learn has a large variance.

Our approach segments images into regions and index each image by a graph
of regions. For a given type of scene, only image parts that are meaningful in that
case are selected in order to make easier the task of the classifiers. This allows
to define an efficient comparison scheme between the graphs that represent the
images.

This paper is organised as follows. In Sect. 2, we explain how to describe the
images and how to select the meaningful regions. The graph matching procedure
and the classification process are described in Sect. 3. Finally, we present some
experiments and discuss their results in Sect. 4.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 147-154, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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(b) (c)

Fig. 1. The original image (a) is first segmented (b), and then we keep only the regions
(c) the type of which has a large mutual information with the scene to predict. When
indexing this image with respect to the countryside label, the sky and the buildings
are considered as non-informative and are discarded.

2 Image Representation

2.1 From Images to Regions

Images are first segmented into regions by using the mean shift algorithm [5].
This is a simple non-parametric technique for maximisation of the probability
density. It basically performs a density gradient ascent.

To perform colour segmentation, the mean shift procedure is applied at var-
ious start locations, then the obtained high density colours are mapped to the
image plane to keep only those belonging to large enough regions. Typically,
this technique gives results as shown on Fig. 1: there are less than 10 regions
per image, that are not necessarily connected but correspond more or less to the
main semantic areas since colour is an important visual cue for generic images.

2.2 Feature Selection

Region Lexicon. The region lexicon consists of a list of the region types that
occur in an image data set. Such a data set is built by gathering various generic
images. Once they are segmented, these images are assumed to provide a good
representation of the possible image regions that occur in the real world.

We cluster this data set of image regions using techniques previously proposed
to find clusters of visually similar images in image databases [0] and based on
fuzzy clustering methods [7]. The resulting clusters contain visually similar image
regions and thus define implicitly a region type. Each of them is included in the
region lexicon.

Selection of Meaningful Regions. For a segmented image, we can determine
the type of each region simply by computing the distance (based on the region
descriptor) to the cluster centroids and choosing the closest one. Let Z denote
the set of images, and X a random variable on Z standing for the distribution of
images. We can build a set of features F' = { f1,..., fx } which are mappings from
T — {0,1}. In the experiments those features are indicators of the presence - or
absence - of a given region type in the image. We denote Fy = f1(X),..., F, =
fp(X) the boolean random variables associated with those features.
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In order to understand which region types are meaningful to recognise a
concept, a filtering phase based on feature selection [¢] is applied as in [9]. The
most standard ways to select features consist in ranking them according to their
individual predictive power, that may be estimated by mutual information [10].

Information theory [11] provides tools to assess the available features. The
entropy measures the average number of bits required to encode the value of
a random variable. For instance, if we denote Y a boolean random variable
standing for the class to predict (i.e. the concept to associate with the image),
its entropy is H(Y) = — > P(Y = y)log(P(Y = y)). The conditional entropy
H(Y|F;) = H(Y, F;) — H(F}) quantifies the number of bits required to describe
Y when the feature Fj is already known. The mutual information of the class
and the feature quantifies how much information is shared between them and is
defined by:

I(Y,F;) = HY) - H(Y|F}) (1)
=H(Y)+ H(F;) — H(Y, Fy)

The features f; are ranked according to the information I(Y, F}) they convey
about the class to predict, and those with the largest mutual information are
chosen. In the image, we keep only the regions that have a region type among
the selected ones (cf. Fig. 1). They are the most meaningful ones to recognise
the concept.

2.3 From Regions to Graphs
Definition 1. A graph G is a 4-tuple G = (V, E, u,v) where

— V is the set of vertices;

— ECV xV is the set of edges;

— u:V — Ly is a function assigning labels to the vertices;
— v: FE — Lg is a function assigning labels to the edges.

Two different alternatives to represent images by a graph are investigated
in this paper. In either case, each region constitutes a vertex of the graph. The
vertex labels are the colour histograms that characterise the corresponding re-
gion. In the first type of graph representation, only vertices corresponding to
adjacent regions (i.e. with at least one point of contact) are linked by an edge,
with no label. In the second graph representation, all vertices are linked to all
the other ones, with a label defined proportionally to the common boundary
length (CBL). Both types of graphs are undirected.

3 Image Classification

Classification of images implies to be able to measure the similarity between
the graphs representing the images. Moreover in the case of images, data are
usually corrupted by noise and strongly depend on illumination conditions. Error
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correcting methods for graph matching have been proposed to cope with these
problems. Among them, the graph edit distance is particularly popular. It defines
a set of possible edit operations and assigns a cost to each of them. The distance
of two graphs is then the minimum cost of all sequences of edit operations that
transform a graph into the other. To compute the graph edit distance, we use
the A* algorithm [12] as described for graph matching in [13]. A look-ahead
procedure [14] is used to speed up the matching process. Last, a k-Nearest-
Neighbour (k-NN) classifier is used to classify the images. Next sections describe
the edit operations and their associated cost.

3.1 Graph Edit Operations

Let p be a mapping between the vertices of two graphs G1 = (Vi, E1, 1, 1)
and Gy = (Va, Ea, lia, v2). We assume that G and G2 are such that Card(V;) <
Card(V2). This mapping consists of elementary mappings (v,w), v € V; and
w € Vo such that each vertex is used only once. The $ element denotes a missing
vertex in graph Gs. For each couple (v, w) in p, the possible vertex edit operations
are defined as follows:

— vertex label substitution: if w # $ the mapping implies the substitution of

p1(v) by pa(w).
— vertex deletion: if w = $, it implies the deletion of v from G;.

For each pair of elementary mappings (v,w) and (v’,w’) in p, the possible
edge edit operations are defined as follows:

— edge label substitution: if 3 an edge e; = (v,v’) € E; and an edge ey =
(w,w") € Ea, the mapping implies the substitution of edge label 4 (v,v’) by
va(w,w").

— edge deletion: if 3 an edge e; = (v,v’) € F; and there is no edge (w, w') € Es,
it implies the deletion of e; from FEj.

— edge insertion: if there is no edge (v,v’) € Eq but 3 an edge ex = (w,w') €
Es, then ey = (v,v’) has to be inserted in Fj.

3.2 Graph Edit Costs

Different sets of graph edit costs are defined for the two graph representations
of images defined in Sect. 2.3. In both cases, the vertices convey the visual
information about the image regions, so the vertex edit operations have the
same cost:

Definition 2. Vertex edit costs for both graph representations:

— vertex label substitution: the cost of the substitution of u1(v) by pe(w) is the
Euclidean distance between the labels (i.e. the colour histograms of the image
regions): (1 (v) — p2(w)) = [|pa(v) — p2(w)|f2-

— vertex deletion: to make the deletion easier on large graphs than on small
ones: c(v—9§) = Carc}(Vl)'
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In the first graph representation, graphs have only edges corresponding to
adjacent regions and the corresponding costs are defined as:

Definition 3. FEdge edit costs for set #1:

— edge label substitution: by definition there is a perfect match so there is no
cost:  c(vi(e1) — va(e2)) = 0.

— edge deletion: to take into account the size of the graph and have comparable
costs:  cle; — §) = Cardl(Vl)'

— edge insertion: by symmetry: (3 — e1) = Car(}(vl).

A second way to define the edges is based on the the common boundary
length (CBL) of two regions. The edge label could be defined as the CBL itself,

or a normalised value based on the CBL, for example max( ,S5L = ¢BL ) or
BLregl BLregZ
CBL CBL

avg( gy "+ pL...,) Where BLyeg; is the boundary length of region i. For such
reg reg.

graphs, since there exist edges between all pairs of vertices, there is no need

anymore for edge deletion or insertion operations:

Definition 4. FEdge edit costs for set #2.

— edge label substitution: for any pair of edges e1 and es,

c(vi(e1) — va(e2)) = [r1(e1) — va(e2)|l2

4 Experiments

4.1 Data Set

The data set is composed of 200 images collected from the web. Four classes
contain instances of a particular scene type: snowy, countryside, streets and
people. A fifth one consists of various generic images aimed to catch a glimpse
of the possible real scenes and thus used as negative samples for the classifiers.
In the experiments, training categories of 30 instances are extracted randomly
from the data set and error rates are averaged on 25 runs. Some examples are
shown in Fig. 2.

4.2 Graph Matching Classification

The edit cost sets proposed in Sect. 3.2 are compared in Table 1. The quality
of the considered set of edit costs depends on the complexity of the underlying
scenes. For class snowy which is rather easy to recognise, the second set of edit
costs is superior to the first one. However, for class people which is rather difficult,
the situation is just the opposite. Since we intend to build some generic classifiers
able to recognise different types of scenes, they have to satisfy an overall criterion
including both the smallest average error and the smallest standard deviation.
The last graph representation has the best test error rate on average, but shows
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countryside people streets

Fig. 2. The meaningful regions correspond to the region types that have a high mutual
information with the label to predict. The upper row shows the original images and
the lower row shows only the meaningful regions in these images.

Table 1. Error rates for various keywords: comparison of various edit cost sets.

keyword edit cost set #1 edit cost set #2 edit cost set #2
(v=CBL) (v = max( %}zf7 %lzé‘))
training error test error training error test error training error test error
snowy 8.4 % 11.4 % 94 % 8.2 % 9.1 % 7.9 %
country 14.5 % 16.3 % 16.5 % 15.8 % 15.4 % 14.4 %
people 12.8 % 15.6 % 19.1 % 20.9 % 17.5 % 19.4 %
streets 14.6 % 17.3 % 16.9 % 16.0 % 17.3 % 15.3 %
mean 15.15 % 15.22 % 13.75 %
deviation 2.25 % 4.54 % 4.15 %

large disparities between scenes. We observe that edge labels based on the simple
adjacency between the regions result in the best overall performance.

Figure 3-a illustrates the influence of the number of neighbours in the clas-
sifier on the test error rate. For the complex scenes, the graphs indicate there
exists an optimal value (around 15 neighbours). This is less obvious on simpler
scenes like country, for which error rates are rather constant, with a slight trend
to increase with the number of neighbours. The number of neighbours is then
set to 15 for the complex scenes and 5 for the simple ones.

4.3 Influence of the Feature Selection

For each type of scene, the feature selection allows to pick out the meaningful
parts of the image. Figure 2 shows the selected regions are consistent with what
can be expected intuitively. The influence of the proportion of selected features
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influence of proportion of selected features.

25

20

% test error
% test error

0 5 10 15 20 25 30 0 20 40 60 80 100
nb nearest-neighbors % selected features

(a) (b)
Fig. 3. (a) The number of neighbours has more influence on the complex scenes for

which an optimal value can be found with roughly 15 neighbours. (b) A feature selection
rate between a third and a half of the features allows to obtain the best error rates.

on the test error rate is presented in Fig. 3-b. The graphs show that lower error
rates can be obtained by selecting roughly between a third and a half of the
region types: the optimal values are then chosen as a tuning reference for each
concept. Table 2 compares the error rates with and without region selection:
performance is improved for each category.

Table 2. Influence of the feature selection on the error rates.

keyword with all regions with region selection

training error test error training error test error
snowy 84 % 114 % 11.1 % 10.9 %
country 145% 163 % 14.5 % 124 %
people 128 % 156 % 12.7 % 10.4 %
streets 146 % 173 % 171 % 14.6 %

Table 3 compiles the computing times of the graph matching process and the
image classification task (performed on a computer with a 800 MHz processor)
for various proportions of selected features. Since the algorithm complexity is ex-
ponential with the number of vertices, feature selection appears as an intelligent
way to greatly speed up the process.

Table 3. Influence of the feature selection on the computational costs.

nodes graph distance classif.
all features 5.6 74.8 ms 7659.1 ms
66% features 3.9 51 ms  497.0 ms
50% features 3.0 1.6 ms 117.8 ms

33% features 2.3 0.3 ms 47.6 ms
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5 Conclusion

In this article we have presented a new approach for image classification, which
is based on a graph representation of the images. The classifier is a k-Nearest-
Neighbour algorithm and uses a graph edit distance for which we have evaluated
different sets of edit costs to find the most appropriate one for image analysis.

Furthermore, we have shown that a region selection by maximisation of the
mutual information between the region types and the class to predict greatly im-
proves the recognition rates while reducing the complexity of the graph matching.
This allows the classifier to offer competitive computing times.

Other existing methods in the literature stress different features in the image.
For instance [1] or [9] lead to more or less comparable results, but what is more,
our method performs better on the type of scenes that are difficult for them.
Further work will investigate how our approach can be combined with these
ones to achieve a better overall performance.
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Machine Learning with Seriated Graphs
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Abstract. The aim in this paper is to show how the problem of learning the
class-structure and modes of structural variation in sets of graphs can be solved
by converting the graphs to strings. We commence by showing how the problem
of converting graphs to strings, or seriation, can be solved using semi-definite
programming (SDP). This is a convex optimisation procedure that has recently
found widespread use in computer vision for problems including image segmen-
tation and relaxation labelling. We detail the representation needed to cast the
graph-seriation problem in a matrix setting so that it can be solved using SDP. We
show how the strings delivered by our method can be used for graph-clustering
and the construction of graph eigenspaces.

1 Introduction

The problem of placing the nodes of a graph in a serial order is an important prac-
tical problem that has proved to be theoretically difficult. The task is one of practi-
cal importance since it is central to problems such as network routing, the analysis
of protein structure and the visualisation or drawing of graphs. Moreover, and of cen-
tral importance to this paper, if the nodes of graphs can be placed in a serial order
then conventional machine learning methods may be applied to them. Theoretically, the
problem is a challenging one since the problem of locating optimal paths on graphs is
one that is thought to be NP-hard [¢]. The problem is known under a number of dif-
ferent names including “the minimum linear arrangement problem” (MLA) [10] and
“graph-seriation”[5].

Stated formally, the problem is that of finding a permutation of the nodes of a graph
that satisfies constraints provided by the edges of the graph. The recovery of the permu-
tation order can be posed as an optimisation problem. It has been shown that when the
cost-function is harmonic, then an approximate solution is given by the Fiedler vector
of the Laplacian matrix for the graph under study [5]. Thus, the solution to the seriation
problem is closely akin to that of finding a steady state random walk on the graph, since
this too is determined by the Laplacian spectrum. However, the harmonic function does
not necessarily guarantee that the nodes are arranged in an order that maximally pre-
serves edge connectivity constraints. In a recent paper, Robles-Kelly and Hancock [ 1]
have reformulated the problem as that of recovering the node permutation order subject
to edge connectivity constraints, and have provided an approximate spectral solution to
the problem.

Although spectral methods are elegant and convenient, they are only guaranteed to
locate solutions that are locally optimal. Recently, semidefinite programming (SDP) [7]
has been developed as an alternative method for locating optimal solutions couched

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 155-162, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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in terms of a matrix representation. Broadly speaking, the advantage of the method is
that it has improved convexity properties, and is less likely to locate a local optimum.
The method has been applied to a number of graph-based problems in pattern recogni-
tion including graph partitioning [?], segmentation [+] and the subgraph isomorphism
problem [2].

The aim in this paper is hence to investigate whether SDP can be applied to the
graph-seriation problem and whether the resulting strings can be used for machine
learning. We commence by illustrating how the cost-function can be encoded in a ma-
trix form to which SDP can be applied. With this representation to hand, then standard
SDP methods can be applied to extract the optimal serial ordering. To do this we lift
the cost function to a higher-dimensional space. Here the optimization problem is re-
laxed to one of convex optimization, and the solution recovered by using a small set
of random hyperplanes. We explore how the resulting strings delivered by the seriation
method can be used for the purposes of learning the class structure (i.e. graph cluster-
ing) and determining the modes of structural variation present for graphs of a particular
class.

2 Graph Seriation

We are concerned with the undirected graph G = (V, E') with node index-set V' and
edge-set £ =C V x V. The adjacency matrix A for the graph is the V' x V matrix with

elements
o 1 if(i,j) e E
AGi,9) = { ) 1
(i) 0 otherwise M
The graph seriation problem has been formally posed as one of optimisation in the work
of Atkins et al [5]. Formally, the problem can be stated as finding a path sequence for
the nodes in the graph using a permutation 7 which will minimize the penalty function

Vi Vi

g(m) =Y > Al ) (x(i) - 7(5))° 2

i=1 j=1

Since the task of minimizing g is NP-hard due to the discrete nature of the permutation,
a relaxed solution is sought using a function A of continuous variables x;. The relaxed
problem can be posed as seeking the solution of the constrained optmisation problem
x = arg ming~ h(z*) where h(z) = >_; - f(i, j)(z; — z;)? subject to the constraints
>, x; = 0and >, 2? = 1. Using graph-spectral methods, Atkins and his coworkers
showed that the solution to the above problem can be obtained from the Laplacian ma-
trix of the graph. The Laplacian matrix is defined to be L4 = D4 — A where D4 is
a diagonal matrix with d; ; = Z?Zl A; ;. The solution to the relaxed seriation prob-
lem is given by the Fiedler vector, i.e. the vector associated with the smallest non-zero
eigenvalue of L 4. The required serial ordering is found by sorting the elements of the
Fiedler vector into rank-order. Recently, Robles-Kelly and Hancock [ 1] have extended
the graph seriation problem by adding edge connectivity constraints. The graph seri-
ation problem is restated as that of minimising the cost-function
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hp() =Y Y (AG,k) + A@i + 1,k))a3 3)

=1 k=1

By introducing the matrix

—_
o
o
.O
s
o

0 2 0 00 0
2=
0 0 0 02 0
0 0 0 00 1

the path connectivity requirement is made more explicit. The minimiser of hg(x) sat-
isfies the condition

\ C x.TNAx,
= arg min
. Tyl x,

“)

Although elegant and convenient, spectral methods are only guaranteed to find a
locally optimal solution to the problem. For this reason in this paper we turn to the
more general method of semidefinite programming to locate an optimal solution which
utilizes the convexity properties of the matrix representation.

3 Semidefinite Programming

Semidefinite programming (SDP) is an area of intense current topical interest in opti-
mization. Generally speaking, the technique is one of convex optimisation that is ef-
ficient since it uses interior-point methods. The method has been applied to a variety
of optimisation tasks in combinatorial optimization, matrix completion and dual La-
grangian relaxation on quadratic models. Semidefinite programming is essentially an
extension of ordinary linear programming, where the vector variables are replaced by
matrix variables and the nonnegativity elementwise constraints are replaced by posi-
tive semidefiniteness. The standard form for the primal problem is: X = arg min -
traceCX*, such that traceF; X = b;, 7 = 1...m, X = 0. Here C, F; and X are real
symmetric n X n matrices and b; is a scalar. The constraint X > 0 means that the
variable matrix must lie on the closed convex cone of positive semidefinite solutions.
To solve the graph seriation problem using semidefinite programming, we denote the
quantity £2'/2 A2~/ appearing in equation (4) by B and 2'/%z, by y. With this nota-
tion the optimisation problem can be restated as A = arg min,r,—; y” By. Noting that
y?'' By = trace(Byy") by letting Y = yy” in the semidefinite programming setting
the seriation problem becomes Y = argminy -« trace BY * such that trace EY™* = 1,
where the matrix E is the unit matrix, with the diagonal elements set to 1 and all the
off-diagonal set to 0. Note that Y = yy” is positive semidefinite and has rank one. As
a result it is convex and we can add the positive semidefinite condition Y € S, where
S+ denotes the set of symmetric n X n matrices which are positive semidefinite.



158 Hang Yu and Edwin R. Hancock

3.1 Interior Point Algorithm

To compute the optimal solution Y*, a variety of iterative interior point methods can
be used. By using the SDP solver developed by Fujisawa et.al [0], a primal solution
matrix Y* can be obtained. Using the solution Y* to the convex optimization problem
(??), we must find an ordered solution y to the original problem. To do this we use the
randomized-hyperplane technique proposed by Goemans and Williamson [7].

Since Y* € S;t, by using the Cholesky decomposition we have that Y = VIV, V =
(v1, ....v, ).Recalling the constraint y”'y = 1, the vector y must lie on the unit sphere
in a high dimensional space. This means that we can use the randomized hyperplanes
approximation. This involves choosing a random vector r from the unit sphere. An
ordered solution can then be calculated from Y* = VTV by ordering the value of
vl'r. We repeat this procedure multiple times for different random vectors. The final
solution g, is the one that yields the minimum value for the objective function y* By.
This technique can be interpreted as selecting different hyperplanes through the origin,
identified by their normal r, which partition the vectors v;, ¢ = 1....n.

The solution vector x, can be obtained using the equation 2'/2z, = 7, and the
elements of the vector . then can be used to construct the serial ordering of the nodes
in the graph. Commencing from the node associated with the largest component of z.,
we sort the nodes in so that the nodes are ordered so that the components of x,. are of
decreasing magnitude and also satisfy edge connectivity constraints on the graph. We
iteratively proceed in the following. Let us denote the list of the visited nodes by S}, at
the kth iteration. Initially S; = i; = argmax; x.(i). We proceed by searching the set
of the first neighbours of i1, i.e. N;; = {j|(i1,7) € E}, to locate the node which is
associated with the largest remaining component of x,. This node is then appended to
the list of nodes visited list and satisfies the condition iy = argmax;en, @«(l). This
process is repeated until every node in the graph is visited. At termination the sorted list
of nodes is the string S¢.

4 Graph Matching

With the converted strings at hand, we are able to pose the graph matching problem as
that of aligning the strings so as to minimise the transition cost on a string edit matrix.
We denote the seriations of the data graph Gp = (Vp, Ep)and model graph Gj; =
(Va, Eri) by X = {1, 22, ...... s randY = {y1,ya, ...... , Yn } respectively. Here m
and n represent the number of nodes in the two graphs. These two strings can be used to
index the rows and columns of an edit lattice. Since the graphs may have different sizes,
we introduce a null symbol e which can be used to pad the strings. The graph matching
problem can be stated as finding a path I =< p1, p2, ...pk..., pr, > through the lattice
which generates the minimum transition cost. Each element pi, € (Vp Ue€) x (Vs Ue)
of the edit path is a Cartesian pair. We constrain the path to be connected on the edit
lattice, and also the transition from the state py, to the state px 1 is constrained to move
in a direction on the lattice, which is increasing and connected in the horizontal, vertical
or diagonal directions on the lattice. The diagonal transition corresponds to the match
of an edge of the data graph to an edge of the model graph. A horizontal transition
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implies that the traversed nodes of the model graph are null-matched. Similarly, the
visited nodes of the data graph are null-matched when a vertical transition is made.

By representing the adjacent states on the path by pj and py1, the cost function of
the edit path can be given as follows:

d(X,Y) =Y nlpk = prs1) (5)
prEl

where 1(prx — pr+1) is the transition cost between the adjacent states. The optimal
edit path is the one that minimises the edit distance between string and satisfies the
condition I™* = argminy d(X,Y’). The optimal edit sequence may be found using
Dijkstra’s algorithm and the matching results are obtained from the optimal transition
path on the edit lattice.

5 Computing a Reference String

We are interested in whether the strings delivered by our graph seriation method can be
used for the purposes of graph clustering and constructing eigenspaces for graphs. To
do this a reference string is required, since this can be used as a class prototype, and also
allows the covariance matrix for a set of strings (i.e. seriated graphs) to be computed.
To construct the reference string, we proceed as follows. After converting the set of
M graphs {G1, Ga, .., G, .G } into a set of strings {Sa,, Sy -, SGys - Sy }> WE
compute the pair-wise edit distances of the strings using the correspondences between
graphs obtained using graph matching technique. We denote the edit distance matrix
by ED¢. We then select the reference string Sy,y so as to satisfy the condition r =
argmin,« Y ¢ ay EDa(r”, ).

This reference string can be used to capture the statistical properties of the set of
graphs. In order to create a meaningful pattern-space for graph clustering, we construct
permuted graph adjacency matrices by making use of the matching results between
the individual string S, and the reference string ;.. For the graph indexed k, the
permuted adjacency matrix is given by

Awtig)={} M (C(i),C(j) € E ©

0 otherwise

where the C'(7) and C(j) represent the node correspondences of nodes ¢ and j in the
reference string. Next we convert the permuted adjacency matrices into long-vectors by
stacking the columns of the permuted adjacency matrices. For the graph indexed k, the
long vectoris Hy, = (Ag(1,1), Ax(2,1), Ax(3,1),....)T.

Our aim is to construct an eigenspace which can be used to capture the modes of
variations is graph edge-structure. To do this, we represent the variations present in the
set of graphs using the mean long-vector and the covariance matrix for the long-vectors.
The eigenspace is constructed by projecting the individual graph long-vectors onto the
directions spanned by the principal eigenvectors of the covariance matrix.

To be more formal, we commence by calculating the mean long-vector (2) and the
long-vector covariance matrix (o) for the set of permuted adjacency matrices using the
following formulae
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M M
H= Al/[ZHk Y= Al/[Z(Hk—H)(Hk—H)T. (7

k=1 k=1
To construct the eigenspace we commence by computing the eigenvalues and eigenvec-
tors for the covariance matrix Y. The eigenvalues \;, A2, ..., Ay are found by solving
the polynomial equations |~ — M| = 0, where I is the identity matrix. The associ-
ated eigenvectors ¢1, @2, . .., ¢ are found by solving the linear eigenvector equation
Yo = Apor. From the eigenvectors we construct a modal matrix. The eigenvectors
are ordered in decreasing eigenvalue order to form the columns of the modal matrix, de-
noted by @ = (¢1|¢d2| ... |¢n). If eigenspace is taken over the leading K eigenvectors,
then the projection matrix is @5 = (p1|d2| - . . |¢ar)- The projection of the long-vector

Hj, onto the eigenspace is given by Hy, = &L Hy,.

6 Experiments

In this section, we provide an experimental evaluation of our new algorithm for graph
seriation. Our experimental evaluation is divided into two parts. First, we present re-
sults for the clustering of graphs using edit distances between seriated node sequences.
In the second part, we test the utility of reference string as a class prototype. For our
experimental evaluation we use the COIL image database. To extract graphs from the
images, we first detect feature points using the Harris corner detector. The graphs used
in our study are the Delaunay triangulations of the point sets. The reason for using
Delaunay graph is that it incorporates important structural information from the origi-
nal image. In the images studied there are rotation, scaling and perspective distortions
present. Example images from the sequences are shown in Fig 1 and correspond to dif-
ferent camera viewing directions of the objects. The detected feature points and their
Delaunay triangulations are overlayed on the images.
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Fig. 1. Delaunay graphs overlayed on coil data.

To explore the clustering of graphs, we have selected four objects from the COIL
database. For each object there are 72 different views. For the 288 graphs in the data-
set, we have computed the complete set of distances between each pair of graphs. We
have performed clustering the graphs using the following procedure. First, we convert
the graphs into strings using our SDP seriation method. Second, the pair-wise corre-
spondences between two different graphs in the set are located. Finally we compute the
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edit distances by using the correspondences on the serialized strings. With the edit dis-
tance matrix at hand, we apply the multidimensional scaling to the edit distance matrix.
The results are shown in Figure 2. The different views of the same object are shown as
points of the same colour. From the figure it is clear that the different objects are well
separated and form distinct clusters.
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Clustering Result for Coil Image Sequence

Fig. 2. Clustering Result.

We now turn our attention to the problem of learning the adjacency structure of
the graphs. For this experiment we first take 40 sequential images from the “duck”
object and 10 images from the “cup” object from the COIL database. By converting
the graphs into strings, and applying the graph matching method, we construct the edit
distance matrix shown in the left-hand panel of Figure 3. Then the reference string is
selected which will generate the minimum edit distance to the set of strings. We then
reconstruct the adjacency matrix in a standard order for each graph according to their
correspondences to the reference string. After transforming the adjacency matrices into
long vectors, we compute the covariance matrix from the set of long vectors. By apply-
ing the principal component analysis(PCA), we obtain the two dimensional eigenspace
shown in the centre-panel of the figure. Here the “circle” symbols denote the duck im-
age sequence and the “plus” symbols denote the cup sequence. To take this analysis one

Fig. 3. Edit Distance matrix (left), results of PCA (right).
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step further, we add 20 more images from the duck sequence to the set described above.
The result of repeating the analysis is shown in the right-hand panel of the figure. From
these results, we can see that, under the guidance of the reference string, the two cluster
of the objects are well separated.

7 Conclusions

In this paper we have shown how graphs can be converted to strings using semi-definite
programming. This is convex optimisation procedure that uses randomised hyperplanes
to locate the solution. We have used the resulting strings for the purposes of clustering
and analysing the nodes of structural variation for sets of graphs. The graph clusters
produced by the method are well separated and the stings delivered by the method can
be used to capture the modes of variation in the structure of graphs of a particular class.
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Abstract. This paper proposes an approach to reduce the stochastic parsing time
with stochastic context-free grammars. The basic idea consists of storing a set
of precomputed problems. These precomputed problems are obtained off line
from a training corpus or they are computed on line from a test corpus. In this
work, experiments with the UPenn Treebank are reported in order to show the
performance of both alternatives.

1 Introduction

Stochastic Context-Free Grammars (SCFGs) are an important specification formalism
that are frequently used in Syntactic Pattern Recognition. SCFGs have been widely used
to characterize the probabilistic modeling of language in Computational Linguistics
[1, 3, 9], Speech Recognition and Understanding [0], and Biological Sequence Analysis
[5]. An important advantage of this formalism is the capability to model the long-term
dependencies established between the different parts of a sentence, and the possibility of
incorporating the stochastic information which allows for an adequate modeling of the
variability phenomena that are always present in complex problems. A notable obstacle
to using these models is the time complexity of the stochastic parsing algorithms that
handle them and the algorithms that are used for the probabilistic estimation of the
models from a training corpus.

Most of the well-known parsing algorithms are based on the Earley algorithm for
SCFGs in General Format [9] or in the Cocke-Younger-Kasami (CYK) algorithm for
SCFGs in Chomsky Normal Form (CNF) [6]. One of these algorithms for SCFGs in
CNF is the inside algorithm [4], which allows us to compute the probability of a string
given a SCFG by using a Dynamic Programming scheme.

The inside algorithm has a time complexity O(n?) for a string of length n. There
are theoretical works that attempt to improve this time complexity. In [10], a version of
the CYK algorithm was proposed whose time complexity is O(M (n)), where M (n)
is the time complexity of the product of two matrices of dimension n. The best known
algorithm for multiplying two matrices of dimension n is described in [2], whose time
complexity is O(n?38). A similar parsing algorithm could be considered for SCFGs by

* This work has been partially supported by the Spanish MCyT under contract (TIC2002/04103-
C03-03) and by Agencia Valenciana de Ciencia y Tecnologia under contract GRUPOS03/031.
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adequately modifying the inside algorithm. However, the large implicit constant associ-
ated to this matrix product algorithm could make this modified parsing algorithm only
interesting for long strings.

Given these drawbacks, other improvement alternatives should be considered. In
this work, we propose a simple technique that allows us to reduce computation time
especially for short strings. The basic idea consists of storing a set of precomputed
problems associated to short strings. The set of problems can be chosen from a training
corpus or it can be composed on line from a test set.

In this work, we explore these two proposals and we report the results of experi-
ments on the UPenn Treebank in order to show the performance of both alternatives.

2 Definitions

A Context-Free Grammar (CFG) G is a four-tuple (N, X, P, S), where N is a finite set
of non-terminal symbols, ' is a finite set of terminal symbols, P is a finite set of rules,
and S is the initial symbol. A CFG is in Chomsky Normal Form (CNF) if the rules are
of the form A — BCor A — a (A,B,C € N and a € X). A Stochastic Context-Free
Grammar (SCFG) G is defined as a CFG in which each rule has a probability of appli-
cation associated to it such that VA € N: > p ooy Pr(A — BO) + 3 5 Pr(4 —
a) = 1. We define the probability of the derivation d, of the string x, Pr¢,_ (z,d;) as
the product of the probability application function of all the rules used in the derivation
d. We define the probability of the string x as: Prg (z) = >, Prg, (z,d.).

An important problem is the calculation of the probability of a string. For SCFG in
CNEF, there are different parsing algorithms that are based on the CYK algorithm. We
describe one of them below.

The inside algorithm [4] allows us to compute the probability of a string by defining
e(A < i+l >) = Prg (A= x;---24),0 < 1 < n, as the probability of
the substring x; . .. z;4; being generated from A. This probability can be efficiently
computed for a string of size n with the following Dynamic Programing scheme for all
AeN:

e(A<i,i>)=Pr(A—uxz;) 1<i<n,

i+l—1
e(A<ii+1>)=>_ > Pr(A— BC)e(B<ik>)e(C<k+1i+l>) (1)
B,CeN:k=i .
(A—=BC)eP 1<li<n, 1<i<n-—1.

In this way, Prg, () = e(A < 1,n >).

First, we analyze the time complexity of the inside algorithm from expression 1. In
the next section, we explain how the computation time can be improved.

Note that the inner loop in the inside algorithm comprises two products and one
addition. Suppose that we denote with the two products and the addition by a. Then,the
total amount of operations is:

1n—1li+1-1 3 2
— 302 42
aP="" " TP )
3
1 i=1 k=1t

n

l

Consequently, the time complexity of the inside algorithm is O(n3|P|).
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3 Time Reduction of the Stochastic Parsing Algorithm

Here, we explain how reduce the time required for the stochastic parsing. We state the
improvement that can be obtained and finally, we explain the main disadvantage of the
proposal.

Note that in expression (1), each substring is a subproblem in the Dynamic Pro-
graming scheme. One possible way to reduce computations in expression (1) consists
of precomputing all the problems. In this case, expression (1) can be computed by con-
sulting such precomputed problems.

It should be pointed out that with this proposal, the efficient search of a precomputed
problem becomes an serious problem. In order to carry out this search efficiently, we
have used hash tables. By using this data structure, the search time can be done linearly
with the length of the subproblem.

If the time complexity of looking for a subproblem of length [ is [ times ¢, where
c is the implicit constant associated to the search in the hash table, then (2) becomes
cf(n), where f(n) = (n® — 3n? + 2n)/3. Note that for real tasks it is reasonable to
think that ¢ << a|P| since | P| can be large.

Note that, for real tasks, it is not feasible to have precomputed all the subproblems
due to the amount of memory required. However, it is feasible to have precomputed all
the subproblems associated to short strings. For example, if we suppose for simplicity
that |[P| = 1, @ = 3¢, and that we have precomputed all the subproblems up to some
size [ < n, we can then save:

Fl) = FO+ 10/ _ | 200)
Fn) 35 (n)

In Figure 1, we have plotted function ¢(I, n) times 100 for some values of [. This
figure shows the savings in percentage depending on the string length. It even shows
savings for small values of /. Note that the assumptions have been simplified, and there-
fore, even more savings can be obtained for a real task.

=g(l,n).
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Fig. 1. Percentage of saving depending on the string length.
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The disadvantage of this the amount of memory that is needed to store the sub-
problems. The amount of memory to store a subproblem is linear with the number of
non-terminal symbols, and the number of subproblems growths exponentially with the
size of the subproblems. Therefore, a trade-off between the amount of memory required
and the amount of computation savings must be established.

Given that it is not realistic to store all the subproblems computed, in this work,
we propose computing only those subproblems that appear in a corpus. The subprob-
lems can be obtained off line from a training corpus or on line from the test set. In the
following section, we study these proposals and we explore practical alternatives for
improving the time complexity without increasing the required memory.

4 Experiments

In this section, we describe the experiments that were carried out to test the alternatives
proposed in Section 3.

The corpus used in the experiments was the part of the Wall Street Journal that
had been processed in the UPenn Treebank project [5]. It contains approximately one
million words distributed in 25 directories. This corpus was automatically labeled, an-
alyzed and manually checked as described in [5]. There are two kinds of labeling: a
POStag labeling and a syntactic labeling that is represented by brackets. The POStag
vocabulary is composed of 45 labels; and the syntactic vocabulary is composed of 14
labels. The corpus was divided into sentences according to the bracketing and, follow-
ing other works, sentences with more than 50 words were ignored (this represented less
than 2% of the corpus). For the experiments, the corpus was divided into two sets: train-
ing (directories 00-20; 41,315 sentences; 959,390 words), and test (directories 23-24;
3,702 sentences; 86,053 words).

Given that we needed a SCFG for the stochastic parsing, we took advantage of an
SCFG that had been estimated in a previous work [!]. This SCFG was learned with
sentences labeled with POStags as described in [1]. The estimation algorithm was the
bracketed version of the inside-outside algorithm [ !, 7]. The final estimated SCFG had
35 non-terminal symbols, 45 terminal symbols, and 1,741 rules.

Here, we describe the experiments that were carried out to test the proposed tech-
nique. Hash tables were used to store the subproblems in all the experiments. All the
software was implemented in C language and the gcc compiler (version 3.3.1) was
used. All experiments were carried out on a personal computer with an Intel Pentium 4
processor of 2.40 GHz, with 1.5 GB of RAM and with a Linux 2.4.21 operating system.

In all the figures, we have plotted the percentage of computation of the proposed
technique with respect to the unmodified inside algorithm when parsing the test set.
In order to evaluate the influence of the length of the parsed strings, the test set was
gradually enlarged by incorporating strings of increasing size.

First, we present experiments in which the subproblems were obtained off line from
a training corpus. Then, we present experiments in which the subproblems were ob-
tained on line from the test set.
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4.1 Experiments with Subproblems Obtained from the Training Set

In this section, we present three experiments. In the first experiment, all the subproblems
that appeared in the training corpus were stored. In the second and third experiments,
we studied techniques to reduce the required memory.

Experiment with All the Subproblem of the Training Set. In this experiment, we
tested the proposed technique without memory restrictions. We obtained all the sub-
problems from the training set up to a given size. Table 1 shows the number of sub-
problems for different sizes (probabilities are represented with integers of four bytes)
and the amount of accumulated memory that was necessary to store all the subproblem
up to a given size. Note that the amount of memory increased notably as the size of the
stored subproblems increased.

Table 1. Number of subproblems in the training set and the required memory.

Subproblem size 2 3 4 5 6

No. of subproblems 1,353 15,276 75,702 209,239 377,254
Accumulated memory (in MB) 0.18 2.22 1233 40.27 90.64

Figure 2 shows the percentage of computation time with respect to the unmodified
inside algorithm with the test set. In the x-axis, we represent the maximum length of
sentences content in the test set. Therefore, each point in the curve stands for the per-
centage of computation time reduction when strings of the test set up to a given length
were parsed.
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Fig. 2. Percentage of reduction in computation time with the test set.

In this figure, it is important to point out two issues. First, the computation saving
improved as expected as the size of stored subproblems increased. Second, the computa-
tion saving that was obtained for short strings was very good. Thus, when subproblems
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up to length six were stored, a computation savings of almost 35% was obtained for
strings of length 15.

Note that not all problems in the training set have to be equally frequent and some
of them might even be unnecessary.

Selection of the Subproblem According to the Frequency of Occurrence. In this ex-
periment, we evaluated our proposal when storing only those subproblems that occurred
at least twice in the training set for the subproblems of largest length (5 and 6). Table 2
shows seen the number of subproblems for different lengths and the amount of mem-
ory required to store them. We can see that the amount of required memory decreased
notably.

Table 2. Number of subproblems in the training set when the less frequent problems (of length 5
and 6) were removed and the required memory.

Subproblem size 2 3 4 5 6

No. of subproblems 1,353 15,276 75,702 81,823 94,084
Accumulated memory (in MB) 0.18 2.22 1233 23.26 35.82

Figure 3 shows the percentage of reduction in computation time when this idea
was used (curve e2). Curve el corresponds to curve n=6 in Fig. 2. The computation
savings was unaffected by this proposal. It should be pointed out, that even though the
amount of required memory decreased notably, problems that are not very probable
according to the grammar might be stored.
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Fig. 3. Percentage of reduction in computation time with the test set when some subproblems
were removed.

Selection of the Subproblems According to Their Parsing Probability. Another cri-
terion for choosing the set of subproblems could be based on the parsing probability.
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An experiment was carried out in which the most “probable” subproblems of sizes 5
and 6 of the training set were stored. In order to choose the most “probable” subprob-
lems, the following function was used: ) , .y Prg, (A ST -x;), where N is the
set of non-terminal symbol of the SCFG. This function can be interpreted as the aver-
age probability of a subproblem of size [ being generated from a non-terminal symbol.
From this function, the following threshold was defined: (3_ . p, > 4cn Pra, (4 =
x1---x1))/|P|, where P, is the set of subproblems of size (. In this experiment, those
subproblems of sizes 5 and 6 that did not overcome this threshold were removed. A
notable reduction in memory consumption was achieved this way (see Table 3).

Table 3. Number of subproblems in the training set when the less “probable” problems of length
5 and 6 were removed and the required memory.

Subproblem size 2 3 4 5 6

No. of subproblems 935 6,244 17,708 25,861 52,098
Accumulated memory (in MB) 0.13 0.96 332 6.77 13.73

Figure 3 (curve e3) shows that the computation savings was slightly worse.

4.2 Experiments with Subproblems Obtained On-Line from the Test Set

One important problem that can appear when subproblems are stored is that the dis-
tribution of strings in the training and test can be very different. Therefore, the stored
problems may not be useful. One possible solution to overcome this issue is to store
on line only those problems that appear in the test set. Note that in this case, additional
time consumption is required. Given that we store subproblems on line, the memory
consumption increases as the test set is being parsed.

We tested this proposal and Table 4 shows the memory required for the test set when
all the sentences were parsed. Note that this memory consumption was obtained when
sentences up to size 50 were parsed, that is at the end of the experiment.

Table 4. Number of subproblems in the test set and the required memory.

Subproblem size 2 3 4 5 6

No. of subproblems 984 6,964 21,691 40,075 53,019
Accumulated memory (in MB) 0.13 1.06 3.96 9.31 16.39

Figure 4 shows the computation savings in this experiment. Curve el corresponds
to curve n=6 in Fig. 2. The savings was worse for long strings than in the experiments
described in Section 4.1. This could be due to the fact that the time used to store the
subproblems was included in the computed time.
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Fig. 4. Percentage of reduction in computation time with the test set when some subproblems
were removed.

4.3 Experiments with Subproblems Obtained Off-Line from the Training Set
and On-Line from the Test Set

Note that both the ideas from Section 4.1 and 4.2 can be combined; that is, we could
use subproblems obtained off line from the training set and subproblems obtained on
line from the test set. In the final experiment, we used both techniques to obtain the
precomputed subproblems.

In order to avoid excessive memory consumption, we first combined the selection
of the subproblem according to the frequency of occurrence in the training set with
the subproblems obtained on line from the test set (see Fig. 5 curve e2, e4). We then
combined the selection of the subproblems of the training set according to their parsing
probability with the subproblems obtained on line from the test set (see Fig. 5 curve
e3,ed).
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Fig. 5. Percentage of reduction in computation time with the test set.
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This combined technique provided good results for short strings (below 13). Above
13, the best results were obtained when the selection of subproblems from the training
set off line was carried out according to frequency of occurrence.

5 Conclusions

A novel technique has been introduced to save computation time using the inside pars-
ing algorithm. The basic idea is to store precomputed problems and use them in the
parsing algorithm. These precomputed problems can be obtained off line from a train-
ing corpus or on line from the test set. This technique was successfully applied in a real
experiment and an important reduction in computation time was achieved. This reduc-
tion was more accentuated in short strings. This fact is especially important for tasks
like Automatic Speech Recognition, where sentences are usually short.

For future work we plan to apply this technique to tasks where the vocabulary size
is small such as RNA Sequence Modeling. Another possibility is to apply this technique
to the inside-outside estimation algorithm for SCFG.
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Abstract. This paper describes a computational framework developed
for the extraction of low-level directional primitives present in an image,
and subsequent organization through a line segment detector. The sys-
tem is divided in three stages: extraction of the directional features in
the image through an efficient implementation of Gabor wavelet decom-
position; reduction of these high dimensionality results by means of a
growing cell structure; and extraction of the segments from the image.
This last step was first implemented through a pseudo-color Fuzzy Hough
Transform and then improved through some principles of the Burns seg-
ment detector.

Keywords: Gabor wavelets, growing cell structures, chromaticity dia-
gram, Hough transform, Burns segment detector.

1 Introduction

The boundaries of objects in an image often lead to oriented and localized
changes in intensity called edges. Edge and segment detection are the first steps
in many image analysis applications and they are of great importance as they
constitute the basis for the higher levels in the system. It has always been a
fundamental problem in computer vision that the higher level processing stages
suffer due to either too little or too much data from the lower levels of the pro-
cessing. Thus, the quality of data available for further analysis is very critical.

This paper describes a framework for the extraction of the directional proper-
ties present in an image through Gabor wavelet decomposition and the detection
of the segments that approximate these properties through a segment detector
based on the fuzzy Hough transform and the Burns segment detector.

The Gabor Wavelet decomposition framework presented here is a compu-
tationally expensive process, but provides precise information about the orien-
tation of image pixels and is independent of image type. Moreover, we have
implemented [I] an approximation to Gabor Wavelets that reduces the com-
putational time and memory requirements through the use of a Gabor Wavelet

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 175-182, 2005.
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decomposition in the spatial domain, which is faster than conventional frequency
domain implementations.

A previous paper [2] describes the use of a pseudo-color fuzzy Hough trans-
form for the detection of the segments present in the image. The pseudo-color
Hough transform works properly in simple images that only contain the objects
to detect, but has some limitations in complex images due to its global nature.
This is the reason why, in this paper, we propose a refinement of the pseudo-
color Hough transform through the introduction of some principles of the Burns
segment detector.

This paper is organized as follows. Sec. 2 describes the extraction of direc-
tional primitives present in the image, Sec. 3 describes the segment extraction
process through a pseudo-color fuzzy Hough transform and Sec. 4 describes the
introduction of the Burns segment detector principles. Finally, Sec. 5 contains
the conclusions from our work.

2 Extraction of Directional Primitives

This section contains a brief introduction of the first stages of the process, the ex-
traction of the directional primitives present in the image through Gabor wavelet
decomposition and the organization of these results through a growing cell struc-
ture. These stages construct the RGB images that the segment detector devel-
oped in this work will receive as input.

Gabor wavelets [3] are complex exponential signals modulated by Gaussians
with two important properties that make them good edge detectors: the opti-
mization of edge localization [!] and the absence of image-dependent parameter
tuning. Their most important drawback is their greedy demand for both memory
and computation time. In a previous paper [2], we developed a more efficient,
multi-resolution spatial domain implementation of Gabor Wavelet decomposi-
tion, which we employ here, based on the convolution of 11 1D-component masks
obtained through the decomposition of the 2D masks that define the wavelets.
The implementation here uses the good edge localization property of Gabor
wavelets, with the exact position of an edge determined as a conjunction be-
tween a maximum in the modulus and a zero crossing in the even or the odd
part of Gabor results.

In our Gabor decomposition, the input image is filtered with a bank of 8
filters centered at frequency i and 8 orientations (kgr ,k = 0..7) leading to 8
resulting images. A reduction of this output space dimensionality is necessary in
the interest of efficiency. Auto-organized structures are a suitable instrument to
achieve this dimensionality reduction as they allow simultaneously the reduction
of the input space and the projection of the topological order in the input space
to the output structure.

In [5], self-organized maps, growing cell structures and growing neural gas
structures were investigated and compared for their power of dimensionality
reduction of Gabor decomposition results. Growing cell structures (GCS) [(]
provided significantly better results. They are artificial neural networks based
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on self-organized maps that eliminate the restrictions of the a priori network
size definition, incorporating a mechanism to add new processing elements when
needed, while maintaining the network topology.

To represent the different directionalities provided by the auto-organized
structure, each processing element was assigned a color from a colormap to
indicate its orientation. The colormap was obtained from 8 equidistant points
on the perimeter of the maximum circle inside the RGB triangle in the chro-
maticity diagram [7], centered at white (see Fig. 1-left). Fig. 1 right shows the
GCS output from a ring demonstrating the colors of the entire direction space,
ie. 0—2m.

Fig. 1. Left: Colormap circle inside the RGB triangle. Right: All orientations after the
GCS analysis.

Figure 2 shows the results from three input images. The first row shows the
original images and second row the results from GCS analysis. Fig. 2 left shows a
medical image that contains protein crystals exhibiting polygonal shapes, Fig. 2
center shows an IR aerial image of a bridge and Fig. 2 right is the picture of a
boat.

3 Segment Extraction
Through the Fuzzy Hough Transform

The Hough transform is widely used in artificial vision and pattern recognition
for the detection of geometrical shapes that can be defined through parametric
equations. Traditional Hough transform implementations are based on the results
obtained by classical edge detectors, like Canny or Sobel. We have designed and
implemented a pseudo-color fuzzy Hough transform [2] based on the pseudo-color
images obtained from the processes described in Sec. 2, that is, color images
where each color represents a specific orientation.

The Hough transform is based on the normal equation of a line, which states
that, if the normal to the line makes an angle 6 with the = axis and the length
of this normal is p, then the equation of the line is given by:
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Fig. 2. First row: images ‘proteins’, ‘bridge’ and ‘boat’. Second row: results of GCS
analysis.

p=x-cosf+y-sinb (1)

Classically, the continuous p — 6 space is quantized into suitable sized (A8 x
Ap) rectangles and each rectangle is associated with an element of an accu-
mulator array A with size N, x Ng. However, this parameterization needs to
be enhanced to deal with the lines in our color-labelled images. That is, all
points with similar colors (close orientations) and neighboring positions will vote
for the same line. Our accumulator will have 2 dimensions p = 0..N, — 1 and
q = 0..Ng — 1, and we must search for the maxima in this space.

The process begins with the quantization of the Hough space in IV, x Ny

cells, where N, = \/If +1I2/ A pand Ny = 7/ A 6, depending on the size

of the image (I, x I,) and the quantization in p (Ap) and 6 (A6). Then, we
compute the contribution of each pixel P in the labelled image, from its angle
qp, determined by the color it has assigned. For this angle, we compute the
corresponding 0p from the quantization in 6 (0p = gp A 6), and then pp from
eq. 1. Then, the quantized value pp is obtained from p by (pp = pp/ A p). A
pixel P contributes to all the neighbors A(p, q) of A(pp,qp) incrementing their
value with AA = C,C,; where:

C, = e~ Brd?(:pP) 4nq C, = e~ Bad®(a:ap) (2)

p being the p-neighbor of pp if C}, < ¢, and ¢ the g-neighbor of gp if C; < g4.
Bp and B, are the parameters of the Gaussians that define the contributions to
the accumulator A, and d is the distance between the two points in p-space and
g-space, respectively. These parameters control how smooth the decay in the
Gaussian is.
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Parameters (3, and ¢, are fixed from Ap. As we have chosen Ap = 1, we
have fixed 3, = 0.1 and ¢, = 0.4. With these (3, and €, when the distance
between p and pp is greater than about 4, the contribution is too small to be
considered. Parameters 3, and ¢, were selected from A# similarly. First, we have
fixed AQ = m/24. As Cy must have a high contribution to the nearest angles not
overlapping the previous and next main orientations, we have fixed 8, = 0.5 and
€4 = 0.1 and so the contributions of angle indices ¢ further than 3 from ¢p are
very small.

Once the voting process has finished, the following step is the maxima detec-
tion. Each maximum detected in the accumulator array corresponds to a line in
the image that can contain one or more segments. For each maximum detected
over a predefined threshold, an inverse Hough transform removes all the contri-
butions to the accumulator array of the pixels belonging to the line detected. A
segment detection takes place simultaneously to the inverse Hough transform.
When a pixel belonging to a line is removed from the accumulator array, its or-
thogonal projection to the line is determined. Once all the pixels involved have
been analyzed, the line is sequentially searched to determine which pixels belong
to each segment.

The final result of this process is an array of segments. Each segment is
defined by the polar coordinates of the line it belongs to and its endpoints. From
these, all the defining characteristics of the segment, like length or slope, can be
computed.

Fig. 3 shows the results from segment detection through the pseudo-color
fuzzy Hough transform applied to the images in the first row of Figure 2. As
the Hough transform is a global instead of a local operation, the information
contained in the whole image can influence the deviation of the segments and
the detection of spurious segments in the result images as Fig. 3 shows. This
is the reason why we have implemented a new segment detector based on the
combination of our pseudo-color Hough transform and some principles of the
Burns segment detector.

Fig. 3. Results of segment detection through our pseudo-color Hough transform from
images in first row of Fig. 2.
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4 Burns Segment Detector
and Pseudo-color Fuzzy Hough Transform

As previously mentioned, the Hough transform is a global process where each
pixel votes for many possible lines. Opposite to this, the Burns segment detector
[3] organizes globally the supporting line context prior to any decision. The
approach consists of grouping image pixels across the width and the length of
the edge through their orientation to form a line support region. Then, only the
pixels in the line-support region contribute to the final representation of the line.

The basic steps of the segment detector are: the grouping of pixels into line-
support regions based on their orientation and the application of the pseudo-color
fuzzy Hough transform described in the previous section to each line-support
region separately.

In order to group pixels into line-support regions, the 7 radians range of ori-
entations is quantized into 4 angular partitions of 7 radians starting at 0. Then,
each edge pixel is labeled according to the partition into which its orientation
falls. If our estimation of the orientation is correct, the pixels belonging to a line
will belong to the same partition or sometimes to adjacent partitions if their
orientation is close to one of the partition boundaries. The simple connected-
components algorithm is then used to form distinct regions for groups of adjacent
pixels lying in the same angular partitions.

If we use only one partition of the orientation range, two problems can arise.
First, two contiguous lines can improperly be merged if they have similar ori-
entations that lie in the same angular interval. Second, the lines lying across a
partition boundary could produce fragmented support regions. The over-merging
problem tends to be reduced as the partition size gets smaller, but then the frag-
mentation problem gets worse.

In the proposed line segment detector, the over-merging problem is solved
by the pseudo-color fuzzy Hough transform. As it uses a finer quantization of
the orientation range (partitions of size ) it can separate contiguous lines
improperly merged into a unique line support region.

In order to solve the fragmentation problem, a new set of partitions is intro-
duced. This partition overlaps the previous one and divides the 7 radians range
of orientations into 4 intervals of 7 radians starting at 7. Each edge pixel is
again labeled according to its orientation. When a set of partitions fragments a
line that lies across a boundary, the other set will place it in the same partition.

Both sets of partitions must be merged in such a way that each pixel is
associated to only one line-support region. The region considered best for the
pixel is the one that provides an interpretation of the line that is the longest.

Each line-support region represents a candidate area for a straight line or
some contiguous straight lines with similar orientations. So, the pseudo-color
fuzzy Hough transform described in the previous section is applied in order to
detect the line segments that it contains. Results obtained from the segment
detector just described applied to the images in the first row of Fig. 2 are shown
in Fig. 4. As in the previous section, the final output of the process is an array
of segments, each segment is defined by its polar coordinates and its endpoints.
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Fig. 4. Results of segment detection through the proposed segment detector from im-
ages in first row of Fig. 2.

As Figure 4 shows, the segment detector just described improves the results
obtained by the segment detector described in Sec. 3 because the segments de-
tected approximate more accurately the edges of the underlying scene. As a
practical example, the image shown in first column of Fig. 2 contains protein
crystals exhibiting polygonal shapes. In an application developed for the detec-
tion of such crystals in images similar to this, the results obtained from the
segments detected by our last segment detector would be much more accurate
than the results from the segments detected by our previous segment detector,
as the images in Fig. 5 show. These images correspond to a zoom over some area
of the original image shown in Figure 2 that contains a polygonal shape.

| gy
"-.,_‘H‘ I _-__ HH“M |£|::H i_

i ¢

- '“‘H::‘H i “-C“" 75
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Fig. 5. Left: zoom over original image in Fig. 2. Center: segment detection results by
the pseudocolor fuzzy Hough transform. Right: results of segment detection through
the proposed segment detector.

5 Conclusions and Discussion

This paper describes a computational framework for the detection of line seg-
ments in 2D images. Its first stage consists of the extraction of the directional
primitives through Gabor wavelet decomposition. The second stage consists of
the organization of these low-level directives through growing cell structures.
And the third stage consists of the segment detection through a combination of
principles from the Burns segment detector and the fuzzy Hough transform.
First, a novel implementation of the fuzzy Hough transform was developed.
This fuzzy Hough transform works with the pseudo-color images provided by
the previous stages of the process and its output is the list of segments present



182 Marta Penas et al.

in the input scene. The main limitation of the fuzzy Hough transform is its
global nature and causes the deviation of segments and generation of spurious
segments. As this paper shows, this limitation can be overcomed through the
application of some principles of the Burns segment detector, that discretizes
the image into line-support regions.

Segment detection results are the basic primitives for a wide range of image
processing techniques, like object detection. Improving the results from segment
detection has a great influence over the quality of the final results. A practical
example is shown in Figure 3 and Figure 4. Detecting the objects present in the
original images shown in Fig. 2 is easier from the segments detected by the Burns
segment detector that from the segments detected by the fuzzy Hough transform,
as these segments approximate more accurately the edges in the original images.

The edge detectors just described have been tested over a wide range of im-
ages. Some of them can be accesed at http://www.lfcia.org/ marta/
IbPRIA2005.
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Abstract. We present a survey of the application of ordinary Kriging to
texture interpolation using a variety of models that have been proposed
to model the variogram of the image. The novelty of our approach is in
the fully automated process of fitting the models to the data over a finite
range of values.

1 Introduction

There are various techniques for interpolating irregularly sampled data [6]. How-
ever most of these techniques assume that the missing data possess some sort of
smoothness and when they are applied to highly textured images they are not
expected to perform well. In this paper we deal with the problem of texture inter-
polation. This is a particularly difficult problem as texture is a spatial property
and irregular sampling may destroy the perceived pattern to a very high degree.
Kriging [1],[1] is a method often employed by geoscientists for the interpolation
of irregularly sampled data, but it is less well known to the image processing
community. In this paper we undertake a thorough study of this methodology
and investigate its local as well as global application in conjunction with five
models that have been proposed to model the variogram of the image. In section
2 we present the definitions of the various terms relevant to this work, and the
methodology we use. In section 4 we present our experimental results and in
section 5 we conclude.

2 Methodology

In general, in order to interpolate using the Kriging method, we must model
the covariance matrix of the random variable. This is done by modelling the
variogram of the data. There are several variogram models available. In this
paper we are using five different variogram models. After the parameters of the
variogram model have been identified, we proceed to perform the interpolation.

2.1 Computation of the Variogram

The variogram is defined as the expected squared difference between two data
points separated by a distance h. Half of the variogram is known as the semi-
variogram [3]. It is defined as:

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 183-190, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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EL_I_L

(V) (VD)

Fig. 1. Test images (I) — (V) and an example sampling mask that retains 9% of the
pixels.

2y(h) = Var{V(P) = V(P; + h)} = E{[V(P,) = V(P; + h)]*} (1)

where E denotes the expected value operator and V(P;) denotes the grey level
value at point P;. If the total number of distinct pairs of data points V; and V,
whose positions are at a distance d;; = h from each other, is denoted by N(h),
then «(h) is also defined as [1]:

1 2

The relationship between the variogram and its corresponding covariance is given
by [1],
= o Co+C4 if |h| =0
0<">—{co+cl—w<h> if |nl>0 ¥

where C is the nugget effect and Cy + C; is the sill. Although theoretically
~(0) = 0, in practice v(0) = Cj and this is the nugget effect. Sill the constant
value v(h) reaches when it levels off.

2.2 Kriging

Kriging [1],[!] is a popular interpolation method, where the unknown value of
the signal fo = f(z,y) at a given coordinate position (zg,yo) is expressed as
a linear combination of the S known, irregularly sampled values of the signal,
so that f(z,y) = Zle ws f(2s,ys), for s = 1,..., 5. The characteristic of this
method is that the weights w, are chosen in such a way as to minimise the

variance of the error made in the estimation of the signal. We define: WT =
(w1, ..., Wws, ), where p is the average of the known samples and DT =
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Fig. 2. Local fitting of the exponential variogram model for image III in which only
the part of the curve on the left of the dotted line is used for local Kriging. Panels
(a) — (e) correspond to 4%, 6%, 9%, 26%, 45% undersampling versions of image III,
respectively, as well as to the full image (f).

(Clo, Czo, e éso, 1), where the elements C;o are the covariances

between the known samples and the signal value at coordinate (xo,yo), and

6'11...0151

c=| : " 1 (4)
Cs1...Css
1 ... 1

is the covariance matrix for the known samples. In general, one must model
the covariance matrix of a random variable f(z,y). This is done by choosing a
covariance function C' and calculating all the required covariances from it. The
covariance function is obtained by using an appropriate variogram model. The
weights are computed according to: W = C~1D.

3 Fitting the Variogram with the Models

In this section we fit the variogram with five different models by using least
square error fitting [5], [2]. The models are fitted globally, to the full variogram,
or locally, choosing the range over which they will be fitted, totally automatically.
The fractal model is defined as [7],

Y(h) = yoh*" (5)

where g is the intercept of the line fitted to the data when we plot log(%(h))
versus log h as h — 0. In general, the log variogram is not linear for the whole
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Original Image (b) Subsampled image (

(i) RMSE = 3148 (j) RMSE =31.30 (k) RMSE = 31.29

Fig. 3. Process of reconstruction for image II from 6% of its pixels, using the fractal
model.

range of h values, so it is obvious that the fractal model cannot possibly be used
for the whole range of h values. However, for small values of h the linear model
may be applicable. The trouble is that we do not know a priori the range of
values of h over which the model may be applied. To solve this problem, we
use the correlation coefficient to guide us in choosing the region over which the
model fits best, in a recursive way.

The exponential variogram model is defined as [1]

. 0 if |h| =0
M=+ (1 —exp(_lllhl)) if [h] > 0 (©6)
The spherical model is defined as [1],

- _ Co + Cq if |h| >a
(k) = {Co +Cy (15" —05(")3) if |h| < a @

In both last cases, we first find the range hy,q. of values of h for which v(h)
flatters out and then we fit the model for h in the range [1, hpaz]-
The Gaussian model is given by [1],

5(h) = Co + C1 — Cy exp (_(@2) ()
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(a)Original Image (b)Subsampled image (c)RMSE= 139.00
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(i) RMSE = 26.52 (j) RMSE = 21.21 (k) RMSE =21.20

Fig. 4. Process of reconstruction for image III from 6% of its pixels, using the linear
model.

This model is very similar to the exponential model, except that |h|/a in the
exponent now is in the power of 2. We fit this model in exactly the same way as we
fit the exponential model, except we plot in Cartesian coordinates the quantities
In(—9(h) 4+ Co + C4) versus |h?|, for h? < h2. The intercept for |h|? = 0 will give
us InCy and the slope of the fitted line will give us — 5, since  In(—=9(h) +
Co+Cy)=— ~IhP + InCh

a2
The linear model is given by [I]

h
A(h) = Co +C’1a if || >0 9)

This model is the easiest to work with. We work just like in the case of the
fractal model only that in that case we were plotting log(h) versus logh and
here we simply plot 4(h) versus h.

When a model is only locally applicable, we should not use in Kriging all available
points in order to interpolate at a particular point. Instead, local Kriging should
be used, where only points at distance h < hy,q, should be used for the interpo-
lation. For simplicity, we use a square window of size (2hmaz + 1) X (2hmaqr + 1)
around each point the value of which is to be estimated, rather than a circular
window.
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Orlglnal Image Subsampled 1mage ) RMSE = 158 19 (d ) RMSE = 135 87

RMSE = 1()1 72 ) RMSE = 67.99 RMSE =44.21 (h) RMSE = 30.50
) RMSE = 23.73 ) RMSE = 22.07

Flg. 5. Process of reconstruction for image IV from 4% of its pixels, using the expo-
nential model.

4 Experiments

To experiment with interpolation methods we subsample the test images shown
in Fig. 1, using sampling masks, with different numbers of pixels, uniformly
distributed over the image. Then we see how well we can recover the values
at the remaining positions, from the retained values. Fig. 2 shows an example
of fitting the exponential model locally to the variograms constructed from the
retained data of image III. There is some limitation when the interpolation is
done by local Kriging when the number of points with known values inside the

Original image RMSE=13.82 RMSE=15.00

Fig. 6. The panel in the middle was reconstructed by global Kriging, while the panel
on the right by local. Although the panel in the middle has a lower RMS error then
the panel on the right, the panel on the right clearly looks as a better reconstruction.
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Table 1. Root mean square error using the various models.

Subsampling ~ Model

4% Fractal
Exponential
Spherical
Gaussian
Linear
6% Fractal
Exponential
Spherical
Gaussian
Linear
9% Fractal
Exponential
Spherical
Gaussian
Linear
Fractal
Exponential
Spherical
Gaussian
Linear
Fractal
Exponential
Spherical
Gaussian
Linear

26%

45%

20 (20)

28 (N/C)

55 (20)

N/C (N/C)
18 (N/C)

18 (19)

24 (N/C)

25 (20)

N/C (19)

16 (16

Image
11 v \Y

=G (23) 21 (20) 13 (N/C)
23 (24) 22 (21) L =G (25)
27 (24) 33 (21) 30 (25)
=G (39) 72 (21) 30 (33)
25 (24) 22 (21) 25 (N/C)
=G (21) 21 (19) 23 (N/C)
21 (21) 20 (19) L =G (23)
=G (21) 22 (19) 25 (23)
=G (29) 23 (20) 29 (29)
26 (21) 23 (19) 23 (N/C)

L =G (19) 19 (18) 21 (N/C)
19 (19) 20 (18) L = G (22)
=G (19) 22 (18) 24 (21)
=G (29) 24 (19) 32 (26)
24 (19) 20 (18) 21 (N/C)
=G (14) 19 (15) 17 (N/C)
13 (41) 18 (16) L = G (16)
=G (14) 18 (14) L =G (17)
=G (18) 37 (20) L = G (25)
19 (13) 18 (16) 33 (N/C)
=G (11) 15 (12) 13 (N/C)
10 (13) 16 (11) L = G (15)
=G (11) 16 (12) L = G (13)
=G (33) 35 (28) L =G (32)
17 (11) 16 (11) 86 (N/C)

local window is too low. To overcome this problem, we only perform Kriging if
the number of points with known values inside the local window is more then 5.
We then perform subsequent iterations where the pattern gradually emerges by
growing the “islands” of reconstructed pixels. Figures 3 — 5 show some examples
of such growth. Table 1 summarises the reconstruction results by giving the root
mean square error for each case. The error of the reconstruction using global
Kriging is given inside paratheses. N/C' in the table means Non-Convergence
and L = G means that the local fitting produced such a value of h;,4, that the
“local” window was actually the whole image.

5 Conclusions

From the results presented here and many more results that we cannot report
due to lack of space, we concluded that local Kriging produces visually better
results than global Kriging. This is not confirmed by the RMS error values of
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Table 1, in general, where global Kriging appears to create better reconstruction.
Fig. 6 demonstrates this point. This shows that RMS is not the best way to assess
the quality of a reconstruction texture of all models tried, as texture is a pattern
rather than an exact deterministic image. The Gaussian model for variogram
fitting performed the worst among all models tried.
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Abstract. Grouping and segmentation of images remains a challenging
problem in computer vision. Recently, a number of authors have demon-
strated a good performance on this task using spectral methods that are
based on the eigensolution of a similarity matrix. In this paper, we im-
plement a variation of the existing methods that combines aspects from
several of the best-known eigenvector segmentation algorithms to pro-
duce a discrete optimal solution of the relaxed continuous eigensolution.

1 Introduction

The natural ability of the human visual system to separate an image into co-
herent segments or groups is extraordinary. This important phenomenon was
studied extensively by the Gestalt psychologists, nearly a century ago [10]. They
identified several key factors that contribute to human perceptual grouping pro-
cess, including cues such as proximity, similarity, symmetry, continuity, common
fate and familiarity.

An auspicious approach that has recently emerged uses spectral methods
for image segmentation. These methods use the eigenvectors of a matrix repre-
sentation of a graph to partition image into disjoint clusters with pixels in the
same cluster having high similarity and points in different clusters having low
similarity. A common characteristic among these techniques is the idea of cluster-
ing/separating pixels or other image elements using the dominant eigenvectors
of a n X n matrix derived from the pair-wise affinities between pixels, where n
denotes the number of pixels in the image. The affinity computed between pixels
captures their degree of similarity as measured by one or more cues.

The general belief that these methods work is based on proofs that if seg-
ments are very dissimilar, spectral methods will be able to separate them [5]. In
addition to, there is accumulated evidence that spectral methods find good or
acceptable segmentation as judged by human on a variety of real data sets [3],
i.e. these methods are effective in capturing perceptual organization features [2].
In spite of these facts, different authors still disagree on exactly which matrix
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and which eigenvectors they should use and how to proceed from the continuous
eigenvectors to the discrete segmentation.

In section 3 we propose a new multiclass spectral algorithm that combines
aspects from a set of algorithms to produce a discrete solution. The discretization
is efficiently computed in an iterative way using singular value decomposition
and non-maximum suppression. Mostly of previous works ([1], [7]) use a k-means
clustering to get a discrete solution from eigenvectors. Although these methods
can produce similar results to our approach, they may take twice as long to
converge. Moreover, while for k-means a good initial estimation is crucial our
method is robust to a random initialization.

2 Spectral Segmentation

2.1 Notation

We introduce some notation, before describing the algorithm in more detail.
Let the symmetric matrix W € R™ "™ denote the weighted adjacency matrix
for a graph G = (V, F) with nodes V representing pixels and edges E whose
weights capture the pair-wise affinities between pixels. Let A and B represent
a bipartition of V, i.e., AUB =V and AN B = (). The degree of dissimilarity
between these two groups can be computed as total weight of the edges that
must be removed to separate the groups. In graph theoretic language, it is called
the cut:

cut (A, B) Z W (i, j) . (1)

i€A,jEB

Although there are efficient computational algorithms to find partitions that
minimizes the cut value, this criterion favours partitions which have small sizes
[11]. Shi and Malik [¢] presented an extension of the cut criterion, called nor-
malized cut criterion:

cut (A, B) cut (A, B)

ncut (A, B) = links (A, V) ~ links (B,V) ’

(2)
where links(A, V) is the total edges weights connecting nodes of A to all nodes
in the graph, and links(B, V) is similarly defined. This new criterion avoids the
segmentation of separated nodes. If we define links(A, A) as the total weights
of edges connecting nodes within A, we can also define a measure for the de-
gree of similarity within groups for a given partition. Using links(A,V) as a
normalization term, we can get normalized links such as:

links (A, A) links (B, B)

links (A, B .
nlinks (A, B) = yres (av) F tinks (B, )

(3)

A simple calculation shows that ncut (A, B) = 2—nlinks (A, B). Hence mini-
mizing the degree of dissimilarity between the groups and maximizing the degree
of similarity within the group, can be satisfied simultaneously by the normalized
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cut. Therefore, this criterion favours both tight connections within partitions
and loose connections between partitions. Among numerous partitioning crite-
rion only minimum cut [11] and normalized cut have this duality property.

A common matrix representation of graphs is the Laplacian. Let D be the
degree diagonal matrix of W such that D;; = Zj Wij, i.e. Dy; is the sum of the
weights of the connections from node 7 to all other nodes in the graph W. Then
the Laplacian of W is the matrix L = (D — W).

2.2 Previous Works

We can classify spectral methods in two classes: recursive spectral segmentation
[3] - these algorithms try to split the data into two partitions based on a single
eigenvector and are then recursively used to generate more partitions; and multi-
way spectral segmentation ([1], [5], [12]) - these algorithms use information from
multiple eigenvectors to do a direct multi-way partition of data. Experimentally
it has been observed that using more eigenvectors and directly computing a k
way partitioning produces better results (e.g. [2], [1], [5]).

As we saw above, a good segmentation corresponds to a partitioning scheme
that separates all the nodes of a graph by cutting off the weakest links among
them, i.e. minimizes the cut value. Wu and Leahy [!1] proposed a clustering
method based on the minimum criterion that minimizes (1). However, as the
authors also noted in their work, and since the cut increases with the number
of edges going across the two clusters, the minimum cut criteria favours cutting
small sets of isolated nodes in the graph.

Shi and Malik proposed to use a normalized similarity criterion to evaluate a
partition. One key advantage of using the normalized cut is that it makes possible
to find a good approximation to the optimal partition'. The approximation to
the optimal partition can be found by computing:

(D-w
mingncut () = min v - )y ,
y yt Dy

(4)
subject to the constraints that y (i) € {—1,1} and y" D1 = 0. y is a binary
indicator vector specifying the group identity for each pixel and 1 is the vector
of all ones. Notice that the above expression is a Rayleigh quotient, so if we
relax y to take on real values (instead of two discrete values), the minimization
becomes equivalent to solving the generalized eigenvalue system,

D2 (D -W)D 2z = pz | (5)

where z = Dl/2y. Shi and Malik verified that for the two-class normalized cut
criterion, the global optimum in the relaxed continuous domain is given by the
second smallest generalized eigenvector. This eigenvector of W is thresholded in
order to cut the image into two parts. This process can be continued recursively

! Minimizing normalized cut exactly is a NP-complete problem.
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as desired. However, as Shi and Malik noted, there is no guarantee that the
solution obtained will have any relationship to the correct discrete solution.
The Scott and Longuet-Higgins algorithm [7] constructs a matrix M whose
columns are the first & eigenvectors of W, normalizes the rows of M and con-
structs a matrix Q = MM7T. It produces a good segmentation if @ has only
1’s or 0’s. They use a not normalized similarity matrix. In [9], Weiss proposed
an interesting combination of the Shi and Malik algorithm and the Scott and
Longuet-Higgins algorithm and proved that it produces the best result. Meila
and Shi algorithm [/] uses a random walk view in terms of the stochastic ma-
trix P, with elements P;;, obtained by normalizing the rows of W to sum 1.
P=D"'W or P;; = W;;/D; . This matrix can be viewed as defining a Markov
random walk over nodes V, with P;; being the transition probability p [i — j|].
Equation (5) can be solved by a simpler eigensystem:

Pz =\ . (6)

The eigenvalues of P are 1 = A1 > Ay > ... > A\, > —1 and the corresponding
eigenvectors are x1, xa, ..., T,. Then from (5) we get,

Hi = 1-— /\z and Z; = D1/2I1' . (7)

for all 7 = 1,...,n. Note that this ensures that the eigenvalues of P are always real
and the eigenvectors are linearly independent. Meila and Shi [1] form a matrix X
whose columns are the eigenvectors corresponding to the k largest eigenvalues
of P and then cluster the rows of X as points in a k-dimensional space.

Ng et al. [5] use a different spectral mapping that behaves very similar to the
Meila and Shi algorithm. It is proved that if the regions are well separated in
the sense that the similarity matrix W is almost block diagonal, and if the sizes
of the regions and the degrees of individual nodes don’t vary too much, the rows
of the X matrix cluster near k orthogonal vectors in R¥ . This fact suggested
the orthogonal initialization presented by Yu and Shi in [12].

3 Our Approach

We propose a multiclass algorithm based on a combined approach that uses
random walk approach proposed by Meila and Shi [1] to create a normalized
weight matrix P; Then, it solves an eigensystem and generates a matrix X, in
the same manner as proposed by Ng et al. [5]; Finally, it uses a discretization
process, proposed by Yu and Shi [12], more efficient than the k-means method,
since it is robust to random initialization and converges faster.

3.1 The Algorithm

In an ideal case, the eigenvectors should only take on discrete values and the
signs of the values can tell us exactly how to partition the graph. However,
the eigenvectors can take on continuous values with very small variation among
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Fig. 1. Continuous vs. discretized eigenvectors: a. A generalized continuous eigenvector
of W. b. A horizontal cross section through the pixels in a. c¢. The discrete solution of
the same eigenvector. d. A cross section through the pixels in c.

them. Figure 1 shows the relation between continuous and discretized eigenvec-
tors. Although there is correct information in this continuous solution, it could
be very hard to split the pixels into segments.

Our goal is to find the right orthogonal transform that leads to a discrete
solution that satisfies the binary constraints of (4), yet it is closest to the con-
tinuous optimum. The result of such discrete solution is presented in Fig. 1.d.
Note that pixels referring to the head are nearly all 1, while others are much
smaller. From this result it is very easy to segment the image.

To obtain a discrete solution we follow the heuristics presented by Yu and
Shi in [12]. Due to the orthogonal invariance of the eigenvectors, any continuous
solution can be replaced by Y R for any orthogonal matrix R € R***. An optimal
partition Y should satisfy the following conditions:

~ 2
min ¢ (Y, R) = HY - YRH with Y € {0,1} _,, Y1y =1,, RTR=1; . (8)

nxk’

where 1 and 1,, are vectors of all ones, and Iy, is the identity matrix.
This can be solved by an iterative optlmlzatlon process:
— Given R, we want to minimize ¢ (Y') = HY YRH The optimal solution is

given by non-maximum suppression:
Y (i,m) = istrue (m = argmax [37 (z,k)D ,teV,me{l.k} . (9)

We let the first cluster centroid be a randomly chosen row of the continuous
solution Y, and then repeatedly choose as the next centroid the row of Y that
is closest to being 90° from all the centroids already plcked

— Given Y, we want to minimize ¢ (R) = HY YRH The solution is given
by singular value decomposition (SVD)
U-2.-UT=SVD (YTY) . (10)
So, we can get,
R=UUT with min¢ (R) = 2 (n — tr (£2)) . (11)

Such iterations monotonously decrease the distance between a discrete solu-
tion and the continuous optimum. The larger tr (§2) is, the closer Y is to Y R.
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Our segmentation algorithm consists of the following steps:

1. Set the diagonal elements W;; to 0 and compute the normalized matrix P.

2. Let 1 = Ay > ... > X\; be the k largest eigenvalues of P and x1, ...,z the
corresponding eigenvectors. Form the matrix X by stacking the eigenvectors
in columns. _

3. Form the matrix Y from X by renormalizing each of X’s rows to have unit

length: ¥ = X - Diag~ 7 (XXT).

. Initialize orthogonal matrix R with random lines of Y.

. Find the optimal discrete solution Y by (9).

. Find the optimal orthogonal matrix R by (11).

. While |tr(£2) — ¢| > eps go to step 5.

. Merge very similar neighbour regions which don’t have edges among them.

0 O Ut

3.2 Initialization of Affinity Matrix W

The quality of a segmentation based on the pair-wise similarities fundamentally
depends on the weights that are provided as input. The weights should be large
for pixels that should belong to the same group and small otherwise.

We associate to each pixel in the image a descriptor that captures brightness
in a neighbourhood of the pixel. The similarity between two pixels is a function
of the difference in their descriptors. Images are first convolved with oriented
filter pairs ( Fig. 2.b) to extract the magnitude of orientation energy (OE) of
edge responses, as used by Malik et al. in [2]. At each pixel 4, we can define
the dominant orientation as 8* = argmax OFp and OE* as the corresponding
energy. The value OE* is kept at the location of ¢ only if it is greater than or
equal to the neighbouring values. Otherwise it is replaced with a value of zero.

For each pair of pixels, pixel affinity is inversely correlated with the maximum
contour energy encountered along the path connecting the pixels (Eq. 12). A
large magnitude indicates the presence of an intervening contour and suggests
that the pixels do not belong to the same segment.

max (x)oE*(Si-‘rt's") . . -
W (i, ) = exp [~ oy | il = sl < "
0 otherwise

where s; denotes the spatial location of pixel 4, [ is the straight line between
pixels, ¢ is a binary value which takes value ’1’ if the phases of the pixels are
different, and r defines the city-block distance.

Figure 2 illustrates the intuition behind this idea. The intensity values of
pixels p1, ps and p3 are very similar. However, there is a contour among them,
which suggests that p; and ps belong to one group while p3 belongs to another.

3.3 Experiments

To test our algorithm, we applied it to a set of images from the Berkeley Seg-
mentation Dataset [3]. It contains 12.000 manual segmentations of 1.000 images
by 30 human subjects. Each image has been segmented by at least 5 subjects,
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Fig. 2. Similarity matrix W is computed based on intensity edge magnitudes: a. The
original image. b. The oriented filter pairs. c. Orientation energy.

so the ground truth is defined by a set of human segmentations. Martin et al.
[3] declare two pixels to lie in the same segment only if all subjects declare that.

Figure 3 compares our results with the ground truth defined by Martin et al..
The column (Fig. 3.b) shows the results of some experiments with our algorithm
and column (Fig. 3.c) represent the ground truth. Note that these ground truth
images represent the probability that a segment will be chosen, if analysed by a
person. We can see that our method reliably finds segments consistent with that
an human would have chosen.

r

(c)

Fig. 3. Results of some experiments with the proposed algorithm: a. The original
image. b. Our results. c. Berkeley ground truth.

3.4 Computation Time

The most time consuming part of the method is step 2, with a time complexity

of O (n%k) using a Lanczos eigensolver [6]. The total time complexity of the

algorithm is around O (n3/2k + 2nk2). On a 1.4GHz Intel® Centrino™ proces-

sor, our method takes about 3 seconds on segmenting an 180 x 120 image, with
k =10, in C. This time could be greatly reduced by using the Nystrom method
proposed by Fowlkes et al. [1].
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4 Conclusion

In this paper, we have presented a variation of the existing methods that com-
bines aspects from different eigenvector segmentation algorithms. The heuristics
are simple to implement as well as computationally efficient. Experimentally, we
have demonstrated the potential of our approach for brightness and proximity
image segmentation. However this model is general and can also be applied in a
variety of image analysis. The improvement of the methodology can be achieved
by designing better similarity distances between pixels. This can be done by
using other cues such as texture or colour. However, good ways of combining
these cues into one similarity matrix is still an open issue. Nevertheless, in the
context of a specific application, dedicated similarity distances could be defined
and lead to more precise segmentation results.
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Abstract. We present in this paper the application of mathematical
morphology operators through a transformation of the Cartesian image
into another geometric space, i.e. pol-log image. The conversion into
polar-logarithmic coordinates as well as the derived cyclic morphology
provides satisfying results in image analysis applied to round objects
or spheroid-shaped 3D-object models. As an example of application, an
algorithm for the shape analysis of the shape of red blood cells is given.

1 Introduction

A fundamental advantage of mathematical morphology [9] applied to image pro-
cessing is that it is intuitive since it works directly on the spatial domain: the
structuring elements considered as the “basic bricks” play the same role as fre-
quencies do in the analysis of the sound. However, by using the discrete metrics
and grids, which are more or less close to the Euclidian ones, we can not achieve
the desired results when working on round objects.

It has been frequently suggested that the image should be transformed to
other domains which would be adapted to the nature of the object or to the
analysis that must be carried out (i.e. Fourier descriptors). This paper (extracted
from [7]) proposes to use mathematical morphology operators through a transfor-
mation of the image into another geometric space that would present an intuitive
nature. Therefore, we try to find a representation system which would present
more advantages than the traditional Cartesian representation when processing
and analizing images which contain some kind of radial symmetry, or in general,
which have “a center”. The selected transformation is the polar-logarithmic rep-
resentation (or log-pol coordinates [12]). This mapping has already been used
to map the visual cortex of primates [10](the photoreceptors of the retina are
placed according to the same organization). Thus, this model of “log-pol fovea”
is applied mainly to the artificial vision systems of robots [3], for which the need
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for real time processing of the visual information gives rise to the same problem
regarding resource-optimization that the human visual system encounters. In
addition, due to its scientific utility in describing fundamental aspects of human
vision, the artificial “fovea” has been applied in order to assess the optical flow,
to encode narrowband video, or else to recognize and track objects [2].

2 Log-Pol Coordinates

2.1 Definition

The polar-logarithmic transformation converts the original image (z,y) into an-
other (p,w) in wich the angular coordinates are placed on the vertical axis and
the logarithm of the radius coordinates are placed on the horizontal one (fur-
thermore a normalization has to be carried out in order to implement the trans-
formation), see Fig. 1(a). More precisely, with respect to a central point (z., y.):

p= IOg(\/(x - xc)2 +(y— yc)27 0 < p < Prmaz; w = arctan Eg:zj’ 0 <w<2m.
pseudocode direct transformation (z,y) = (p,w)

forp=1:R{; forw=1:W {;

T = AX}?M Rg COS(Q;TVW) + Xecentral Y = AYI%“H R}% Sin(Za’/w) + Yeentrail

ImageValue(p,w) = ImageValue(f(z,y)) } }

2.2 Properties

Rotation. Because of the periodic nature of the angular component, rotations
in the original Cartesian image become vertical cyclic shifts in the transformed
log-pol image.

Scaling. The changes of size in the original image become horizontal shifts in the
transformed image, according to the autosimilarity property of the exponential
function, i.e. A is the scale factor, ' = A\r = p’ = log \r = log A\+1logr = cte+ p.

Choice of a Center. Due to the definition of the pol-log image, the choice of
the center (z¢,y.) is crucial. In fact, all the algorithms are sensitive to variations
of the center, since the existence of a center is the principal prerequisite for all
further developments. If the center point is not previously defined by the nature
of the object, the choice of the center of gravity as central point is deemed
adequate for most of cases.

If the goal is to analyze extrusions, the maximum of the distance function
from the binary mask (the ultimate eroded set) can be considered as a sat-
isfactory choice. This center maximizes the inscribed circumference within the
object, however the main drawback is that this maximum can be multiple (set of
regional maxima). In general, a better choice would correspond to the geodesic
center defined as the minimum of the propagation function (if the set has no
hole the propagation function reaches its minimum value at a unique point) [0].
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3 Cyclic Morphology

3.1 Definition

Let f(z,y) be an image defined on the discrete space E C Z2, (z,y) € (Z x Z),
with values of the complete lattice 7 (for simplicity the complete lattice is
considered to be 7 = Z or a subset from Z corresponding to the grey lev-
els 7 = {0,1,---,255}). The extension of the operators from classical mathe-
matical morphology to the log-pol representation is achieved by changing the
support of the image in order to introduce the principle of periodicity. The
log-pol transformation of the function f(z,y) generates a new function im-
age f(p,w) : E,., — T , where the support of the image is the space E,,,
(p,w) € (Zx Z,) and where the angular variable w € Z,, is periodic with period p
equivalent to 2w. A new relation of neighborhood is established where the points
at the top of the image (w = 0) are neighbors to the ones at the bottom of the
image (w = p — 1), therefore the edge connection should only take into account
in the radial direction. The image can be seen as a strip where the superior and

the inferior borders are joined, see Fig. 1(b).
(b)

Fig.1. (a) Example of conversion (z,y) — (p,w) ((xc,yc) corresponds to the body
center of the crab). (b) Dilatation of one point by a square in log-pol coordinates.

The aim of this change is to preserve the invariance with respect to rotations
in the Cartesian space, when morphological operations are done in the log-pol

space, see an example in Fig. 2.
(a) (b) (c) (d)

Fig. 2. (a) Original and 180° rotation, (b) Direct transformation: pol-log, (c¢) Closing
using as SE a centered square, (d) Invert transformation: Cartesian.
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3.2 Implementation

In order to implement the new neighborhood relation and to be able to use
morphological operators, two possibilities are considered:

— Modify the neighborhood relation and the basics operators code (erosion,
dilation, etc.) by adding the operator “module of the size of the image in
the direction of the cyclic coordinate”. So if (p,w) corresponds to the (x,y)
axes, “y” should be substituted by “y mod(ymaz)” for the whole code.

— Extend the image along its angular direction by adding the top part of the
image onto the bottom and the bottom part onto the top. The size of the
vertical component from each part should be bigger than the size of the
vertical component of the structuring element in order to avoid a possible
edge effect. After having “cycled the image”, morphological operators should
be applied as usual and only the image corresponding to the initial mask
should be kept. In Fig. 3 an illustrative example is shown. With this system
all the existing code is recyclable.

(a) (b) (c) (d)

Fig. 3. Example of 2D Cyclic dilation: (a) Original , (b) “Cycled image”, (c) Dilation
by a square, (d) Original image mask: cyclic dilation.

3.3 Meaning of the Structuring Elements

The use of classic structuring elements (SE) in the log-pol image is equivalent
to the use of “radial - angular” structuring elements in the original image. A
vertical structuring element corresponds to an arc in the original image and a
square corresponds to a circular sector (see fig. 4). For all the examples here
presented, the center of the SE corresponds to the central point.

(a) (a”) (b) (b’) (c) (©)

Fig. 4. Pol-log structuring elements (a,b,c) and their equivalence in the Cartesian
space(a’,b’,c’). For all these exemples (z.,y.) is the central point of the image.

It is worth noting the fact that horizontal and vertical neighborhoods respec-
tively acquire radial and angular sense in the original image; for instance, the
transformation from a circumference is a vertical straight line.
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4 Tools

Once cyclic morphology is defined, all the classic operators from mathematical
morphology can be applied, giving at first view very interesting results for a
certain kind of images. Some examples are given below.

4.1 Circular Filtering

One of the immediate applications is a method for extracting inclusions or ex-
trusions from the contour of a relatively rounded shape with simple openings or
closings [9]. The proportion of the vertical size of the structuring element with
respect to the whole vertical size represents the angle affected in the original
Cartesian image. With respect to a classical extraction in Cartesian coordinates,
the choice of size is not as critical, making this a very advantageous point. It
is due to the large zone plate in the openings/closings spectrum that is always
found after a determined value (until the complete elimination of the object).

(a) (b) (¢) (d) (d)

Fig. 5. Extremities segmentation from “Leiurius quinquestriatus”: (a) Original, (b)
Binary mask, (c¢) Log-pol transformation ((z,y.) corresponds to the body center), (d)
Opening with a vertical structuring element sized 20% of the whole image (i.e. 72°),
(e) Invert transformation.

4.2 Radial Skeleton

Let g be an image with only a connected component object. Let § be the log-pol
transformation of g. If the chosen center to transformation g — ¢ is inside the
object, the frontier of the object in § goes from the top of the image (w = 0°) to
the bottom (w = 360°), and the connected component region resulting from the
transformation of the object remains on the left of the edge (p < pedge). If we
apply an homotopic thinning [3] to § (according to the cyclic neighborhood); a
skeleton is obtained mainly in the horizontal direction. This construction, when
coming back to the Cartesian space, makes the skeleton to acquire a radial sense.
Therefore, we define a radial inner skeleton as the skeleton obtained by an
homotopic thinning from the log-pol transformation of an objet. The invert
transformation to Cartesian coordinates from the branches of the radial inner
skeleton has radial sense and tends to converge on the center (p = 0). We also de-
fine the radial outer skeleton as the skeleton obtained by an homotopic thinning
from the inverted image of the log-pol transformation of an object. The invert
transformation to Cartesian coordinates from the branches of the radial outer
skeleton has radial sense and this time, they tend to diverge to an hypothetical
circumference in the infinity (p — 00), see examples given in Fig. 6 and 8.
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(a) (b) () (d)

Fig. 6. Radial outer Skeleton: (a) Original , (b) Log-pol transformation (c) Inverted
image , (d) Thinning, (e)Results in cartesian space.

(e)

5 Erythrocyte Shape Analysis:
Inclusions and Extrusions Extraction Algorithm

In hematology, the visual analysis of the morphology of erythrocytes (size, shape,
color, center,...) is of vital importance as it is well known that anomalies and
variations from the typical red blood cell are associated with anemia or other
illnesses [4]. In Fig. 7 a selection of abnormal erythrocytes is shown. We present
hereafter one of the algorithms dedicated to the shape analysis developed in
the MATCHCELL2 project [7], [1]. The aim of this algorithm is to extract the
inclusions or extrusions from the erythrocyte shape, which is ideally round.

(a) (b) (c) (d) (e)
Fig. 7. (a) Normal erythrocyte, (b) “Mushroom” erythrocyte, (¢) “Spicule” erythro-
cyte , (d) “Echinocyte” erythrocyte, (e) “Bitten” erythrocyte.

5.1 Algorithm

An algorithm for the extraction of extrusions and the identification of “mush-
room” class is presented. It starts with the binary mask of the segmented ery-
throcyte, image (A), and the results correspond to image (G), see Fig. 8). If
(G)# 0 and the verifications are confirmed, it is classified as “mushroom” ery-
throcyte (we have considered the gravity center as the center of the log-pol
transformation).

1°/ Log-pol transformation from (A) = (B). 2°/ Radial inner skeleton from
(B) = (C). 3°/ Circular filtering: Residue from a vertical opening of 120°
(maximal admissible angle for the extrusion) from (B) = (D)=extrusion can-
didates. 4°/ Geodesic reconstruction from (D) using as markers (D)N(C) =
(E). 5°/ Biggest connected set from (E) = (F). We verify that [Surface(F) >
1 Sur face(E)]. 6°/ We verify that two branches of (D) reconstruct (F). 7°/ We
verify that [Surface(F)/sizeimage > ps2]. 8°/Invert transformation from (F) to
Cartesian coordinates = (G)'.

Y u1 and ps are fixed experimentally to 0.75 and 0.005.
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Fig. 8. Upper row, extrusion extraction algorlthm for “mushroom” erythrocytes. Lower
row, other examples of “mushroom” extraction (1,2,3).

Moreover, an analogous algorithm in order to extract the inclusions has been
developed by applying the radial outer skeleton (step 2), and a closing instead
of an opening (step 3).

5.2 Validation of the Approach

The algorithm has an efficient and robust performance in the extraction of inclu-
sions and extrusions. The use of the skeleton in order to sieve the candidates gives
much greater robustness than would a mere opening or closing. This procedure
refines small connected components preselected as deformations. Furthermore,
the examples corresponding to “bitten”, “spicules” and “mushroom” have been
correctly classified (see more examples and details in [7]).

6 Conclusions and Perspectives

The fundamental idea here presented is that the conversion of the image into
another intuitive geometric representation can provide advantages over the tra-
ditional Cartesian representation. Regarding mathematical morphology, the key
issue is to obtain structuring elements that are adapted to the nature of the
objects to be analyzed, not by deforming them, but by transforming the image
itself. The conversion into polar-logarithmic coordinates as well as the derived
cyclic morphology appears to be a field that may provide satisfying results in im-
age analysis applied to round objects or spheroid-shaped 3D-object models [7].
Basically, we have presented binary image processing and some of its basic tools,
however the study of more complex morphological operators still remains, as well
as a deeper developing of image processing for grey-scale or color.
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Abstract. Hyperspectral applications in remote sensing are often fo-
cused on determining the so-called spectral signatures, i.e., the reflectan-
ces of materials present in the scene (endmembers) and the corresponding
abundance fractions at each pixel in a spatial area of interest. The de-
termination of the number of endmembers in a scene without any prior
knowledge is crucial to the success of hyperspectral image analysis. This
paper proposes a new mean squared error approach to determine the
signal subspace in hyperspectral imagery. The method first estimates
the signal and noise correlations matrices, then it selects the subset of
eigenvalues that best represents the signal subspace in the least square
sense.

1 Introduction

Hyperspectral remote sensing imagery is an important technology for monitoring
the environment. Hyperspectral imagery is widely used in many applications such
as land cover classification, mineral mapping, and detection of targets activities
1.

Hyperspectral systems have improved significantly through recent advances
in sensor technology, being able to acquire many narrow contiguous bands of high
spectral resolution in optical and infrared spectra [2, 3]. Hyperspectral sensors
provide more detailed and accurate information of the spatial region than their
multispectral ancestors, leading, however, to higher dimensional data sets.

Each pixel of an hyperspectral image can be considered as a vector in the
space RL, where L is the number of bands. Under the linear mixing scenario,
the spectral vectors are a linear combination of a few vectors, the so-called end-
member signatures. Therefore, the dimensionality of data is usually much lower

* This work was supported by the FCT, under the projects POSI/34071/CPS/2000
and PDCTE/CPS/49967/2003 and by DEETC of ISEL.
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than the number of bands. A key problem in dimensionality reduction in hy-
perspectral imagery is the determination of the number of endmembers, termed
intrinsic dimension (ID) of the data set. The estimation of the ID allows a cor-
rect dimension reduction and thus gains in computational time and complexity.
Moreover, the projection of spectral vectors onto a subspace of lower dimension
improves the signal-to-noise ratio (SNR).

There are basically two approaches for estimating ID [4]: global and local.
The first estimates ID of data set as a whole. The second estimates ID using
information contained in sample neighborhoods. The latter approach avoids the
projection of data onto a lower-dimensional space. Projection techniques, which
are generally used as global approaches, seek for the best subspace to project data
by minimizing an objective function. For example principal component analysis
(PCA) [7] seeks the projection that best represents data in the least square
sense; maximum noise fraction (MNF)[6] or noise adjusted principal components
(NAPC)[7] seeks the projection that optimizes the ratio of noise power to signal
power. This is in contrast with PCA where no noise model is used.

Topological methods are local approaches that estimate the topological di-
mension of a data set [3]. For example curvilinear component analysis (CCA) [9]
and curvilinear distance analysis (CDA) [10] are non-linear projections that are
based on the preservation of the local topology.

Recently Harsanyi, Farrand, and Chang developed a Neyman-Pearson de-
tection theory-based thresholding method, referred as HFC, to determine the
number of spectral endmembers in hyperspectral data (see [11] chapter 17).

This paper proposes a method to estimate the number of endmembers in
hyperspectral linear mixtures. The method first estimates the noise correlation
matrix based on multiple regression theory, assuming spectral smoothness. Then
an eigen-decomposition of the signal correlation matrix estimates is done.

To determine the signal subspace dimension, we identify the subset of eigen-
values that best represents, in the least square sense, the mean value of data set
[12]. Since hyperspectral mixtures have nonnegative components, the projection
of the mean value on any signal subspace eigenvector is always non-zero.

The paper is structured as follows. Section 2 describes the fundamentals of
the proposed method. Section 3 evaluate the proposed algorithm using simulated
and real data. Section 4 ends the paper by presenting some concluding remarks.

2 Subspace Estimation

Let Y = [Yl, Ys,.. .YN} be a L x N matrix of spectral vectors, one per pixel,
where N is the number of pixels and L the number of bands. Assuming a linear
mixing scenario, each observed spectral vector is given by

y=xXx-+n
= Ms + n, (1)
where y is an L-vector, M = [m;, mo, ..., m,] is the mixing matrix (m; denotes

the 7th endmember signature and p is the number of endmembers present in
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the covered area), s = [s1,82,...,8p]7 is the abundance vector containing the
fractions of each endmember (the notation (-)7 stands for vector transposed)
and n models system additive noise.

Owing to physical constraints [1 3], abundance fractions are non-negative (s =
0) and satisfy the so-called positivity constraint 17's = 1, where 1 is a p x 1 vector
of ones.

The correlation matrix of vector y is Ry, = R, + R,,, where R, = MR.M
is the signal correlation matrix, R,, is the noise correlation matrix and Ry is
the abundance correlation matrix. An estimate of the signal correlation matrix
is given by

Rz = Ry - Rna (2)

where ﬁy = YYT/N is the sample correlation matrix of Y, and R, is an
estimate of noise covariance.

Assuming that the spectral reflectance of endmembers varies smoothly, the
noise correlation matrix R,, can be inferred based on multiple regression theory
[11]. This consists in assuming that

Y =0,8,+ €, (3)
where 0; = [Y1,...,Yi—1,Yit1,..., Y] is the explanatory data matrix, 3, =
[B1, B2, .., 0r]T are the regression parameters, and €; random errors. Vector 3;
is inferred from Y for i = 1,2,..., L by multiple regression theory. Finally, we

compute /E\Z = Yz - 01,31

Figure 1 left, illustrates, based on simulation, the reflectance x and x + n
for a given pixel. Figure 1 right, presents true and estimated noise for the same
pixel. Notice the similarity.

Matrix R, is the sample covariance of the estimated noise €;.

Reflectance
0.2 — p——
- estimated noise
0.1
.) ’ { fi
o j il
\
-0.1
. -020 . . .
0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
Wavelength (um) Wavelength (um)

Fig. 1. Left: Illustration of the noise estimation based on spectral smoothness; Bold
line: Reflectance of a pixel; Narrow line: Noise corrupted reflectance; Right: solid line:
true noise; dashed line: estimated noise.
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Let the singular value decomposition (SVD) of R, be,
R, = ESE’, (4)

where E = [e,..., e, €x4+1...,er] is a matrix with the singular vectors or-
dered by the descendent magnitude of the singular values. The space R can be
splitted into two orthogonal subspaces: < Ej, > spanned by E; = [e1, ..., €]
and < Ej- > spanned by Eif = [ej11,...,er], where k is the order of the signal
subspace.

Since hyperspectral mixtures have nonnegative components, the projection
of the mean value of Y onto any eigenvector e;, 1 < ¢ < k, is always nonzero.
Therefore, the signal subspace can be identified by finding the subset of eigen-
values that best represents, in the least square sense, the mean value of data
set.

The sample mean value of Y is

X
y:NZYi
i=1
N | X
MY 3
i=1 i=1
=c+w, (5)

where ¢ is in the signal subspace and w ~ N(0,R,,/N) [the notation N(u, C)
stands for normal density function with mean p and covariance CJ. Let cj, be the
projection of c onto < Ej, >. The estimation of ¢; can be obtained by projecting
y onto the signal subspace < E} >, i.e., ¢x = Py, where P = EkEf is the
projection matrix.

The first and second order moments of the estimated error ¢ — ¢, are

E[C—Ek] =C—E[Ek}

=c— E[Pky]

=c—Prc

=C—Cg

= bk, (6)
E[(c—¢k)(c—¢cx)"] = byb{ + PR, P{/N, (7)

where the bias by, = P c is the projection of ¢ onto the space < E,ﬂ- >. Therefore
the density of the estimated error ¢ — ¢y, is N(bg, PyR,PL/N),
The mean squared error between ¢ and ¢y is
mse(k) = E[(c — ) (c— )]
= tr{E[(c —¢Ck)(c— Ek)T}}
= bl'by + tr(PyR, P} /N). (8)
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where tr(-) denote the trace operator. Since we do not know the bias by, an
approximation of (Eq. 8) can be achieved by using the bias estimates Bk =
Piy. However, E[by] = by and E[bI'by] = blby, + tr(PLR,PL /N), ie.,
an unbiased estimate of bZby, is b by, — tr(PﬁRnPkLT/N). The criteria for the
signal subspace order determination is then

k = argmin (b by + tr(PyR,PT/N) — tr(PER, P /N))
— argmin (y"PL Py + 2t2(PyR,,/N) — tx(I/N))
= arg mkin (yTPé‘y + 2tr(PkRn/N)), 9)

where I is the identity matrix.

3 Experiments

3.1 Computer Simulations

In this section we test the proposed method in simulated scenes. The spectral
signatures are selected from the U.S. geological survey (USGS) digital spectral
library [15]. Abundance fractions are generated according to a Dirichlet distri-
bution given by

Ilpy +p2+ oo+ 1p) o1 a1 -
plag,ag, ..., ap) = F(Nl)F(M2)-~F(M:) o' ah? Lok L (10)

where 0 < o; <1, 37 o, = 1, Elag] = pi/ > %_; pk is the expected value of
the ith endmember fraction, and I'(-) denotes the Gamma function.

The results next presented are organized into two experiments: in the first
experiment the method is evaluated with respect to the SN R and to the number
of endmembers (p). We define SNR as SNR = 10log,(E[x"x|/E[n"n]). In
the second experiment, the method is evaluated when some endmembers are
present in a few pixels of the scene.

In the first experiment, the hyperspectral scene has 10* pixels and the num-
bers of endmembers varies from 3 to 15. The abundance fractions are Dirichlet
distributed with mean value p; = 1/p, fori =1,...,p.

Fig. 2 left shows the evolution of the mean squared error, i.e., yTPé-y +
2tr(PrR,,/N) as a function of the parameter k, when SNR = 35dB and p = 5.
This figure shows that the minimum of the mean squared error occurs when
k =5, which is equal to the number of endmembers present in the image.

Table 1 presents the signal subspace order estimate as function of the SNR
and of p. In this table it is compared the proposed method and the virtual
dimensionality (VD), recently proposed in [I1]. The VD was estimated by the
NWHEFC based eigen-thresholding method using the Neyman-Pearson test with
the false-alarm probability set to Py = 10~*. The proposed method finds the
correct ID for SNR larger than 25dB, and under estimates ID as the SNR
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Fig. 2. Left: mean squared error versus k, with SNR = 35dB, p = 5; (first experiment)
Right: mean squared error versus k, with SNR = 35dB, p = 8 (3 spectral vectors occur
only on 4 pixels each; (second experiment).

Table 1. k as function of SNR and of p; Bold: Proposed method; In brackets: VD
estimation with NWHFC method and Py = 10~*.

k
Method New (VD) New (VD) New (VD) New (VD) New (VD)
SNR (in dB) 50 35 25 15 5
p=3 3 3 3 (3 3 @ 3 (1 3 (@
p=5 5 (6 5 (6 5 (6 5 (6) 4 (3)
p=10 10 (11) 10 (11) 10 (9) 8 (8) 6 (2
p=15 15 (16) 15 (15 13 (13) 9 (9) 5 (2

decreases. In comparison with the NWHFC algorithm the proposed approach
systematically yields better results.

In the second experiment SN R = 35dB and p = 8. The first five endmembers
have a Dirichlet distribution as in the previous experiment and the other three
are forced to appear only in 4 pixels each one. Fig. 2 right show the mean squared
error versus k, when p = 8. The minimum of mse(k) is achieved with k = 8.
This means that the method is able to detect the rare endmembers in the image.
However, this ability degrades as SINR decreases, as expected.

3.2 Cuprite Experiments

In this section, we apply the proposed method to real hyperspectral data col-
lected by the AVIRIS [3] sensor over Cuprite, Nevada. Cuprite is a mining area
in southern Nevada with mineral and little vegetation [16]. Cuprite test site, lo-
cated approximately 200 Km northwest of Las Vegas is a relatively undisturbed
acid-sulfate hidrothermal system near highway 95. The geology and alteration
were previously mapped in detail [17, 18]. A geologic summary and a mineral
map can be found in [16]. This site has been extensively used for remote sens-
ing experiments over the past years [19, 20]. This study is based on subimage
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( 250 x 190 pixels and 224 bands) of a data set acquired on the AVIRIS flight
19 June 1997 (see Fig. 3 left). AVIRIS instrument covers the spectral region
from 0.41pm to 2.45um in 224 bands with 10nm bands. Flying at an altitude of
20km, it has an instantaneous field of view (IFOV) of 20m and views a swath
over 10km wide. R

The method proposed when applied to this data set estimates k = 23 (see
Fig. 3 right). According to the truth data presented in [10], there are 8 materials
in these area. This difference is due to the following:

1. Rare pixels are not accounted in the truth data [10];
2. Spectral reflectances varies a little from pixel to pixel.

The bulk of spectral energy is explained with only a few eigenvectors. This can
be observed from Fig. 3 center, where the accumulated signal energy is plotted
as function of eigenvalues index. The energy contained in the first 8 eigenvalues
is 99.94% of the total signal energy.

= Mean squared error
“““ Noise power
o =i+ Projection error

Energy (%)
mse(k)

2 4 6 8
Number of eigenvalues k

Fig. 3. Left: Band 30 (wavelength A = 667.3nm) of the subimage of AVIRIS cuprite
Nevada data set. Center: Percentage of signal energy as function of the number of
eigenvalues; Right: mean squared error versus k for cuprite data set.

When VD was estimated by the HFC based eigen-thresholding method (P =
1073) on the same data set, this leads to an estimation of the number of end-

members equal to k = 20.

4 Conclusions

The determination of the signal subspace dimensionality is a difficult and chal-
lenging task. In this paper, we have proposed a method to estimate the dimen-
sionality of hyperspectral linear mixtures. The method is based on the mean
squared error criteria.

A set of experiments with simulated and real data leads to the conclusion that
the method is an useful tool in hyperspectral data analysis yielding comparable
or better results than the state-of-the-art methods.
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Abstract. Texture-based pixel classification has been traditionally carried out
by applying texture feature extraction methods that belong to a same family
(e.g., Gabor filters). However, recent work has shown that such classification
tasks can be significantly improved if multiple texture methods from different
families are properly integrated. In this line, this paper proposes a new selection
scheme that automatically determines a subset of those methods whose integra-
tion produces classification results similar to those obtained by integrating all the
available methods but at a lower computational cost. Experiments with real com-
plex images show that the proposed selection scheme achieves better results than
well-known feature selection algorithms, and that the final classifier outperforms
recognized texture classifiers.

1 Introduction

Texture classification consists of identifying the texture patterns present in an image
given a set of known texture patterns (models) of interest (e.g., urban soil or crops in
aerial images). In its most general form, the problem consists of identifying the texture
pattern to which every image pixel belongs [11][3][10]. This problem differs from tex-
ture segmentation [4][6], which aims at finding regions of uniform texture within the
image without identifying them.

In order to determine the texture pattern associated with the region in which a
given pixel lies, it is first necessary to compute one or several texture features by eval-
uating some fexture feature extraction methods (texture methods in short) in a
neighborhood of the pixel. The features obtained after applying one or several texture
methods can then be recognized by a pattern classifier.

A wide variety of texture methods have been proposed in the literature [11]. The
majority of texture classifiers combine methods from the same family (e.g., Gabor fil-
ters) [9][11][12]. However, every family of texture methods is potentially useful for
texture discrimination to a larger or lesser extent. Thus, it was shown in [3][10] that the
proper integration of texture methods from different families leads to better classifica-

* This work has been partially supported by the Spanish Ministry of Science and Technology
under project DP12004-07993-C03-03.

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 215-222, 2005.
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tion results than those obtained with well-known texture classifiers based on methods
from a single family.

However, it is not necessary to combine all the available texture methods for
achieving good results. Frequently, after integrating several methods, further improve-
ments are negligible compared to the increase in computation. In addition, it is also
well known that classification rates may start degrading if too many texture methods
are integrated due to the curse of dimensionality. Thus, determining a minimum subset
of methods whose integration maximizes the final classification is still an open issue.

Feature selection for classification aims at selecting a feature subset without signif-
icantly decreasing the accuracy that the classifier reaches when it utilizes all the
available features [2][5]. Hence, feature selection algorithms can be applied for obtain-
ing a significant subset of texture methods given a specific texture discrimination
problem. However, there is no consensus with respect to the utilization of those algo-
rithms due to the amount of factors that affect their performance: the type and
dimensionality of the data, the number of available features, the number of classes, the
evaluation criterion utilized for determining the goodness of a subset of features, the
search procedure for generating subsets of features, and the criterion used for stopping
the search of new subsets.

In fact, the only search strategy that assures a unique optimal feature subset is the
one based on an exhaustive search, by examining all the possible subsets of a desired
size. However, this alternative is not feasible even if the dimension of the feature set is
not excessively large, since the number of possible subsets increases combinatorially.
Thus, a number of suboptimal selection techniques have been proposed [2][8] that
apply trade-off solutions between computational efficiency and classification accuracy
in order to generate subsets of features.

Although a large number of feature selection algorithms have been developed, they
are still inefficient to use because they require users with knowledge about low-level
details of the procedure [2][5][8]. From the previous surveys it follows that there is no
single feature selection method that can be applied to all datasets or application fields.
The choice of a feature selection method depends on various dataset characteristics:
the ability to handle different data types, the ability to handle multiple classes, the abil-
ity to handle large datasets and the ability to handle noisy datasets.

This paper presents a new texture method selection scheme based on the texture
classifier previously proposed in [3][10]. By taking into account the texture patterns to
be classified, the proposed technique determines a reduced number of texture methods
whose integration produces classification results comparable to or better than those
obtained when all texture methods are integrated. Experimental results with complex
textured images show that the proposed selection scheme leads to better classification
results than when other well-known feature selection algorithms [2][8] are instead uti-
lized. The final texture classifier outperforms recognized texture classifiers based on
texture methods belonging to the same family.

The organization of this paper is as follows. Section 2 summarizes the texture
classifier that is the basis of the proposed technique. Section 3 describes the proposed
texture feature selection scheme. Section 4 shows experimental results of the integra-
tion of widely-used texture methods with the proposed technique, as well as a
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comparison with a well-known texture classification framework (MeasTex [12]). Con-
clusions and further improvements are finally presented in section 5.

2 Texture Classification

Let {7}, ..., T} be a set of T texture patterns of interest. Every texture T, is described
by a set of sample images. Let I be an input textured image. In order to classify a target
pixel I(x,y), a feature vector, (W,(I(x,»)), ..., U, (I(x,»))), is determined. Each
feature 1,(I(x, y)) is obtained by applying a texture method L, to the pixels contained
in a square window centered at I(x,y), whose size is experimentally set for each
method. M texture methods are considered. The classification algorithm first intro-
duced in [3] and later improved in [10] consists of four stages summarized below:

(a) Supervised training stage. A set of M x T likelihood functions P,(I(x, y)|t;) are
defined based on the probability distributions P;; corresponding to the evaluation
of every method U; over the pixels of the sample images corresponding to each
texture ;. Each distribution is defined in the interval [MIN,,, MAX; nE

PG|t = Py(u,(I(x, ) € [MIN,; MAX,]) (1)

(b) Integration of multiple texture methods. A linear opinion pool [1] combines the
above likelihood functions:

M
P(x,»)|1) =Y wy Pi(1(x,)|T) 2)
i=1
Every w;; is computed as the average of the KJ-divergence between T; and the
other models:
M ! T
Wi = dij’/zdrj T_ Z KJ[(Tk,Tj) (3)
=1,k

The Kullback J-divergence [7], which measures the separability of two probability
distributions is defined as:

KJ,(t,7T,) = j' (I)(A — B)log(4/B)du (4)

with 4 and B being defined from the previous probability distributions:
A= P, (MAX;, u+ MIN,,(1 —u)) and B = P;,(MAX,;, u+ MIN,,(1—-u)).

(c) Maximum a Posteriori Estimation. A set of T posterior probabilities are computed
by applying the Bayes rule:

P(I(x,»)|T)P(1))
T

M M T
Py = Y w; /Y wy
Y PAE )T P(T) o1 o

k=1

P(t[1(x,)) = 5

I(x, ) is likely to belong to the texture class T; with the maximum posterior prob-
ability P(’Ej|l(x,y)) .
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(d) Significance Test. A significance level Kj is defined based on two ratios utilized to
characterize the performance of classifiers: sensitivity (S, ) and specificity (S,,)
[10]. Pixel I(x,y) will be finally labelled as belonging to texture class t, iff
P('cj|I(x, y)) > 7\,] . Otherwise, it will be classified as unknown.

3 Automatic Selection of Texture Methods

The texture classifier summarized above is able to integrate any number of texture
methods. This section presents an off-line selection algorithm that, given a set of tex-
ture patterns of interest and a set of texture methods, obtains a reduced subset of those
methods whose integration allows to classify the given texture patterns similarly to or
better than when all the texture methods are integrated.

Initially, the significance of every method is determined based on its performance
in classifying the given patterns. All methods are then sorted in descending order of
significance. Finally, a sequential forward generation procedure keeps adding new
methods from the top of the sorted list until a performance criterion is maximized.

The individual significance S;; of a texture method W; with respect to a texture
pattern T; is estimated as follows. Let I, be a sample image (or a collection of
images) of texture T;. By applying (1) to I; the likelihood P;(I;(x, ) is obtained.
Based on it, the Bayes rule is applied with all priors being P;(t,) = 1/7,
ke [1,T]:

Pi(L(x, J’)|T,)
- (6)

Pi(Tj|I,-(x,y)) =
D PAL(x. )T

k=1

Every pixel I;(x, y) is then classified into the texture pattern that leads to the max-
imum posterior probability Pi(t|1,(x,»)). Let R;; be the percentage of pixels from
I, that are correctly classified (classification rate) into texture T, when method p; is
utilized. The individual significance S;; is defined as the normalized classification
rate:

M
Sij = Rij/ZRkj S; = ZSU (7)
k=1

S;; 1s defined in the interval [0, 1], with zero indicating that |1, is unable to distin-
guish pattern T;, and one that [, is the only method able to classify that pattern. The
global significance S; of method , for the given texture patterns is finally defined as
the sum of individual significances S;; associated with that method (7). The M texture
methods ; are then sorted in descending order of S;. This ordering is already useful
in case the texture classifier utilizes a predefined number of methods lower than M.

However, the final goal consists of choosing a specific subset of methods out of the
sorted list. Hence, the texture classifier from section 2 is subsequently applied to the
sample images of the given texture patterns in order to compute average classification
rates by integrating different subsets of methods, starting with the most significant
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o UNRIOWH

Fig. 1. Test images and ground-truth. Black regions in the latter correspond to unknown
patterns. Dark squares enclose areas in which 17x17 pixel windows can be fitted

method and progressively adding a new method from the head of the sorted list until
all methods are integrated. Let @ and ¢ respectively be the maximum and minimum
average classification rates obtained after the previous iterative process.

Let Ry ,; be the average classification rate obtained by integrating the first m
methods, m € [1, M], from the head of the sorted list (m most significant methods).
Both  Rj,; and m are normalized between zero and  one:
Riim = (R — 0)/ (P -9) and m = (m—-1)/(M-1). A performance measure
ranging between zero and one is defined as:

_ 1o Rum L g
which gets its maximum value in case the maximum classification rate ® were
obtained with the first, most significant method (® = R, ), and its minimum value if
the minimum rate ¢ were obtained when all the A available methods are integrated
(¢ = R;,). In the end, the subset formed by the 1 most significant methods is cho-
sen, with 1 being:

N = arg max Riy i Prim ©))

4 Experimental Results

The proposed technique has been evaluated on real outdoor images containing com-
plex textured surfaces. Fig. 1(top row) shows two of those input images. Four texture
patterns of interest have been considered: “sky”, “forest”, “ground” and “sea”. A set of
sample images representing each of those patterns was extracted from the image data-
base and utilized as the training set for the classifiers.
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—+— Proposed
&M

LW

QBB
—— LWV
—+— Relief
—+— B-Course
——E-SFG

WSFG

Mean classification rates

12 3 4 5 6 7 8 9101 12 13 14

Number of texture methods
Fig. 2. Classification rates for the sample images of the 4 texture patterns by integrating a
varying number m of texture methods. (Proposed) m methods sorted by significance. (Others) m
methods selected with previous feature selectors

Fig. 1(bottom) shows the ground-truth classification of the test images by consid-
ering the texture patterns of interest. Black areas represent image regions that do not
belong to any of the sought texture patterns —a supervised texture classifier aims at
identifying a set of texture patterns in an input image, not at segmenting all of the
image regions. Pixels that belong to those “unknown” texture patterns have not been
taken into account in the classification rates presented below.

Considering previous surveys (e.g., [11]), 14 widely-used texture methods evalu-
ated on 17x17 pixel windows have been considered to be integrated with the texture
classifier summarized in section 2: four Laws filter masks (R5R5, E5L5, E5ES, R5S5),
two wavelet transforms (Daubechies-4, Haar), four Gabor filters with different wave-
lengths (8, 4) and orientations (0°, 45°, 90°, 135°), three statistics (variance, skewness,
homogeneity) and the fractal dimension. Based on the sample images of the 4 texture
patterns of interest, the 14 methods were sorted in descending order of significance (7).

The texture classifier was then applied to the given sample images 14 times, ini-
tially considering only the most significant texture method and then adding a new
method from the head of the sorted list at a time, until all 14 methods were integrated.
Fig. 2(Proposed) shows the mean classification rates obtained for every subset of
methods.

If (9) is applied, a trade-off solution consisting of the 5 most significant methods is
obtained: Daubechies-4, Haar, ESES, variance, E5L5. This combination leads to clas-
sification rates similar to those obtained with all 14 methods (see Table 1) but at a
much lower cost (one third of methods).

The proposed selection scheme has been compared to 8 general purpose feature
selection algorithms [2] (LVI, LVF, QBB, LVW, Relief, B-Course, E-SFG, WSFG). All
pixels of the sample images were classified with the proposed texture classifier, which
was executed 14 times for each feature selection algorithm, every time with a different
number of methods from 1 to 14. The integrated methods were determined by the cor-
responding feature selector, given the desired number of methods and using as training
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Table 1. Classification rates (%) for the images in Fig. 1 with the proposed classifier (integrat-
ing 14 and 5 selected methods) and with MeasTex

Texture Classifier F;;;)l (F;;ghtl)
Proposed classifier with all 14 methods 75.5 73.0
Proposed classifier with 5 selected methods ~ 75.0 72.2
MeasTex (12 Gabor filters, MVG) 72.3 65.7
MeasTex (12 Gabor filters, 5-NN) 73.1 68.2
MeasTex (4 Fractal features, MVG) 63.9 60.4
MeasTex (4 Fractal features, S-NN) 64.5 63.6
MeasTex (4 GLCM statistics, MVG) 65.4 63.1
MeasTex (4 GLCM statistics, 5-NN) 51.7 56.5

features the outcome of all 14 texture methods applied to the same sample images. Fig.
2 shows the average classification rates corresponding to those experiments. In the
majority of cases, the subsets obtained by applying the proposed significance-based
ordering led to the best classification rates, including the subset with 5 methods.

The proposed texture classifier complemented with the new selection scheme has
also been compared to the widely-used texture classifiers included in the MeasTex
framework [12]. The same sample images utilized before were also used as the training
dataset for MeasTex.

Table 1 gives the pixel classification rates corresponding to the test images from
Fig. 1. The first two rows correspond to the application of the proposed texture classi-
fier respectively fed with all the available methods and the 5 selected ones. Both S,
and S, (see significance test in section 2) were set to 95%. The remaining rows show
the results produced by MeasTex for different combinations of texture families
{Gabor, Fractal, GLCM} and classification algorithms {MVG, 5-NN}. The proposed
classifier produces the best results even when MeasTex integrates more methods.

Fig. 3(top) shows the classification maps for the test images in Fig. 1 after apply-
ing the texture classifier fed with 5 methods chosen according to the proposed
selection scheme. Fig. 3(bottom) shows the best classification maps given by MeasTex
according to Table 1: 12 Gabor filters, 5S-NN. The other MeasTex results are much
worse qualitatively.

5 Conclusions

This paper presents a new technique for selecting a subset of texture methods whose
integration with a previously proposed texture classifier produces classification results
similar to or better than the results obtained when all the available texture methods are
integrated. Experimental results with complex real images show that the proposed
selection scheme is more advantageous than general purpose feature selection algo-
rithms, and that a texture classifier which properly integrates those methods
outperforms widely-recognized texture classifiers based on texture methods from a
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3. (top) Classification maps with the proposed classifier by integrating the 5 selected

methods. (bottom) Best classification maps with MeasTex (12 Gabor filters, 5-NN)

same family both quantitatively and qualitatively. Further work will consist of extend-

ing

the proposed technique to unsupervised classification and segmentation, by

automatically generating texture patterns from input images.
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Abstract. The processing, description and recognition of dynamic
(time-varying) textures are new exciting areas of texture analysis. Many
real-world textures are dynamic textures whose retrieval from a video
database should be based on both dynamic and static features. In this
article, a method for extracting features revealing fundamental proper-
ties of dynamic textures is presented. These features are based on the
normal flow and on the texture regularity though the sequence. Their
discriminative ability is then successfully demonstrated on a full classi-
fication process.

1 Introduction

1.1 Context

The amount of available digital images and videos for professional or private
purposes is quickly growing. Extracting useful information from these data is
a highly challenging problem and requires the design of efficient content-based
retrieval algorithms. The current MPEG-7 standardization (also known as the
“Multimedia Content Description Interface”) aims at providing a set of content
descriptors of multimedia data such as videos. Among them, texture [12] and
motion [1] were identified as key features for video interpretation. Combining
texture and motion leads to a certain type of motion pattern known as Dynamic
Textures (DT). As the real world scenes include a lot of these motion patterns,
such as trees or water, any advanced video retrieval system will need to be
able to handle DT. Because of their unknown spatial and temporal extend, the
recognition of DT is a new and highly challenging problem, compared to the
static case where most textures are spatially well-segmented.

1.2 Dynamic Texture Recognition

Dynamic texture recognition in videos is a recent theme, but it has already led

to several kinds of approaches. In reconstructive approaches ([11] or [10]), the
recognition of DT is derived from a primary goal which is to identify the param-
eters of a statistical model ‘behind’ the DT. Geometrical approaches ([7], [13])

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 223-230, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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consider the video sequence as a 3D volume (z, y and time t). Features related to
the DT are extracted by geometric methods in this 3D space. Qualitative motion
recognition approaches ([0], [1], [8]) are based on the human ability to recognize
different types of motion, both of discrete objects and of DT. The aim is not to
reconstruct the whole scene from motion, but to identify different kinds of DT.

1.3 Goals

In the context of video retrieval, we aim at supporting queries involving nat-
ural and artificial quasi-periodic DT, like fire, water flows, or escalator. In the
following sections, a method for extracting features revealing the fundamental
properties of DT is presented (section 2). These features are based on the nor-
mal flow and on the texture regularity though the sequence. Their discriminative
ability is then tested in a full classification process (section 3).

2 Feature Extraction

2.1 The Normal Flow as a Medium of Motion Information

Definition. The quantitative approach to dynamic texture recognition is based
on the assumption that computing full displacements is not necessary, is time
consuming (because of regularization matters) and is moreover not always accu-
rate. The partial flow measure given by the normal flow can provide a sufficient
information for recognition purpose. By assuming constant intensity along 2D
displacement, one can write the optical flow equation [5]:

v(p).VI(p) + It(p) = 0 (1)

with p the pixel where the optical flow is computed, I;(p) the temporal derivative
of the image at p, and VI(p) its gradient at p. Only the component of the optical
flow parallel to VI(p) can be deduced (known as the aperture problem). It then
gives the normal flow v (p) (n is a unit vector in the direction of VI(p)):

Li(p)

“Ivim) " @

uN(p) =

Why Is the Normal Flow Suitable for Dynamic Textures? The normal
flow field is fast to compute and can be directly estimated without any iterative
scheme used by regularization methods [5]. Moreover, it contains both temporal
and structural information on dynamic textures: temporal information is related
to moving edges, while spatial information is linked to the edge gradient vectors.
Its drawback is its sensitivity to noise, which can be reduced by smoothing or
applying a threshold on spatial gradients.

Extraction of the Normal Flow Fields. In order to extract numerical fea-
tures characterizing a DT, the normal flow fields are computed for each DT.
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Fig. 1. Normal flow field (a) and its norm (b) on the ‘plastic’ sequence.

For reducing the noise-sensitivity of the normal flow, a Deriche [3] blurring fil-
ter, set with o = 1, is applied to the sequence, followed by a linear histogram
normalization. Image regions with low spatial gradients are masked through an
automatic threshold on the spatial gradient, as values of their motion vectors
would not be significant. The normal flow is then computed according to formula
(2), excluding the ‘masked’ pixels.

Figure 1 illustrates the computation of the normal flow field (la) and its
norm (1b) on a waving ‘plastic’ sequence. The texture of the ripples created by
the wind on the plastic sheet is well-visible.

2.2 Spatiotemporal Regularity Features

In this section, we summarize the regularity filtering method [2], then present
our temporal regularity features used to classify dynamic textures.

The regularity method quantifies periodicity of a (static) texture by evalu-
ating, in polar co-ordinates, the periodicity of its autocorrelation function. Con-
sider a digital image I(m, n) and a spacing vector (d, dy). Denote by pgy(ds, dy)
the normalized autocorrelation of I(m,n). We obtain p,, via the FFT using the
well-known relation between the correlation function and the Fourier transform.
The polar representation ppor(c, d) is then computed on a polar grid («;, d;) by
interpolating pgy(ds,dy) in non-integer locations. The negated matrix is then
used, referred to as the polar interaction map: Mpy(4,7) = 1 — ppoi(i, ). (See
figure 2.)

(a) (b) (c) (d) (e)
Fig. 2. (a) A pattern and a direction within the pattern. (b) Autocorrelation function.

(c) Polar interaction map. (d) Contrast function for the direction. (e) Polar plot of
R(i) overlaid on the pattern.
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A row of My (i, 7) is called a contrast function. A periodic texture has con-
trast functions with deep and periodic minima. Our definition of regularity [2]
quantifies this property. For each direction ¢, the algorithm [2] computes direc-
tional regularity R(i) = Rpos(i)Rint (i), where Ry,s(i) describes the periodicity
of the layout of the elements comprising the pattern, while R;,;(¢) indicates how
regular (stable) the intensity of the elements is. Based on R(7), a number of tex-
ture regularity features can be computed. In this study, we only use the mazimal
reqularity Mr = max; R(7). 0 < Mg < 1, with 0 indicating a random, 1 a highly
regular pattern. Mpr > 0.25 means visually perceivable periodicity.

The maximal regularity is computed for a set of overlapping windows covering
the image. This procedure is called regularity filtering. The window size W is
determined by the period of the structures to be detected: the filter responds to
a structure if more than two periods are observed.

When applied to a dynamic texture, the method evaluates the temporal vari-
ation of the maximal regularity. For each frame ¢ of a sequence, Mg is computed
in a sliding window. Then the largest value is selected, corresponding to the
most periodic patch within the frame. This provides a maximum periodicity
value, P(t), for each t.

2.3 Extracted Features

Six features have been defined for characterizing a dynamic texture. These fea-
tures are based on the normal flow and on the texture regularity. (See table 1.)

Table 1. Features characterizing dynamic textures.

Normal flow Regularity
1. Divergence 3. Peakiness 5. Mean of P(t)
2. Curl 4. Orientation 6. Variance of P(t)

- Features based on the normal vector field are:

e the average over the whole video sequence V of the divergence (scaling mo-
tion) and the curl (rotational motion) of the normal flow field,
e the peakiness of the normal flow field distribution, defined as the average
flow magnitude divided by its standard deviation,
_ e
>

oo I

e the orientation homogeneity of the normal flow field: ¢ €[0,1]

where v is the normal flow vector at i and (2 is the set of points with non-
zero normal flow vectors. ¢ reflects the flow homogeneity of the DT compared
to its mean orientation. A detailed description of its meaning is given in [9].

- The two spatiotemporal regularity features are the temporal mean and vari-
ance of the maximum periodicity value P(t) computed for the original greyscale
sequence. Their computation on the normal flow sequence is under consideration.

All the selected features are translation and rotation invariant.
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3 Results of Classification on a Real Dataset

3.1 The Dataset

The defined features have been applied on a dataset acquired by the MIT [11].
For test purposes, each sequence was divided into 8 non-overlapping subsets
(samples), half in x, y and ¢. This dataset is browsing a wide range of possible
DT occurrences (fig. 3): an escalator (A), a fire (B), a waving plastic sheet (C),
clothes in a washing machine (D), a waving flag (E), smoke going upward (F),
ripples on a river (G), a strong water vortex in toilet (H), trees (I) and boiling
water (J).

Fig. 3. The DT dataset (courtesy of the MIT). Each column represents a class of
dynamic texture and contains different samples of a class.
3.2 Experiment and Results

The 6 features have been computed for all the 8 samples of each of the 10 classes.
Figure 4 illustrates the orientation homogeneity for class A, F' and I.

Fig. 4. Orientation homogeneity for A (¢ = 0.85), F (¢ = 0.44) and I (¢ = 0.05). The
main orientation is pointed by the triangle and its homogeneity is proportional to the
base of this triangle.

For a rigid and well-oriented motion like the escalator A, the homogeneity
value on orientation is high, reflecting a consistent main motion flow. The smoke
F is not well segmented and has a lower value for orientation homogeneity.
However, the ascending motion of the smoke is still extractable. The tree waving
in the wind (class I) has a very low main orientation value due to its oscillating
motion, resulting in an overall null displacement on the sequence.
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Fig. 5. Maximum regularity values for each frame. Mean values on the sequences are
Pa =0.460, Pr = 0.013 and P; = 0.198.

Figure 5 exemplifies the temporal evolution of the maximum periodicity value
for the same DT. The size of the sliding window was set to 40 x 40 pixels.
Dynamic textures A and I have significant and stable regularity values through
time, whereas F' appears as a random texture.

After normalization of the features, the leave-one-out classification test was
carried out based on the nearest class. The test runs as follows. Given a class
represented by 8 samples, one of the samples is selected. The other 7 samples are
used as the learning samples and the mean values of the 6 features are computed
for these 7 samples. The mean feature values for each of the other 9 classes are
computed for all 8 samples. Then the distance between the selected sample s

)

with feature vector E(S and a class ¢ represented by its mean feature vector

Fi(c) is computed as

6
D(s,c) = > wi-||F* — F|
=1

where the weights w; were set empirically as w; = 1 except for wy = 3.

The sample s is classified as belonging to the nearest class n: D(s,n) <
D(s,c) for all ¢ # n. This procedure is repeated for each sample of each class.
Table 2 is the confusion matrix Cp4 of the test.

Cpq shows the number of times a sample from class p was classified as be-
longing to class ¢, with the off-diagonal elements being misclassifications (see
figure 3 for the order of the classes).

The overall accuracy is 93.8%. There are 5 cases of misclassification, with
for instance 2 occurences of D (cloth in a laundry) were classified as E (waving
flag).

This success rate has been obtained with only 6 features. Moreover, while the
feature based on orientation homogeneity seems to be the most discriminative,
each feature plays a role. For instance, the classification was performed with
setting the regularity weights to zero (ws = wg = 0), and the success rate
dropped to 85%. The regularity enables in this case to reduce the ambiguity
between class D (laundry) and class E (flag): without the regularity features,
there are 3 more cases of misclassification between those 2 classes.



Dynamic Texture Recognition Using Normal Flow and Texture Regularity 229

Table 2. Confusion matrix Cpq.
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4 Conclusion and Future Prospects

This article deals with the novel issue of dynamic texture recognition.

We have proposed a method for extracting quantitative features of dynamic
textures. Based on the normal flow and on the texture regularity, the derived
features are fast to compute and easily interpretable by a human operator. Their
use in a full classification test has enabled to show their discriminative power:
with only 6 features, the success rate reaches 93.8%.

Tests on a larger database will however be performed to better assess the
capabilities and the limits of the proposed approach. Although the MIT database
is currently the most frequently used collection of dynamic textures, no standard,
rich dataset for comparing different DT classification algorithms seems to exist.
It is obvious that the MIT dataset is not sufficient for statistically significant
performance evaluation. However, some comparisons can still be done and certain
conclusions can be drawn.

In particular, Szummer et al. [11] classify the MIT data based on the 8 best
matches and obtain the accuracy of 95%. However, their approach needs much
more computation than the proposed one, so their method does not seem to be
applicable to DT based video retrieval, which is our ultimate goal.

Otsuka et al. [7] use only 4 of the 10 MIT sequences and obtain with 5
features a classification accuracy of 97.8%. Our method yields a similar result
with a similar number of features, but for a significantly larger number of classes
(all 10). Finally, Peh and Cheong [3] report on a classification accuracy of 87%
achieved with 6 features for 10 DT classes different from the MIT data.

Our current work also aims at studying the multi-scale properties dynamic
textures in space and time. In a longer term, we will also investigate the retrieval
of dynamic textures in unsegmented scenes.
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Abstract. Accurately and automatically detecting image orientation is a task of
great importance in intelligent image processing. In this paper, we present
automatic image orientation detection algorithms based on these features: color
moments; harris corner; phase symmetry; edge direction histogram. The statis-
tical learning support vector machines, AdaBoost, Subspace classifier are used
in our approach as classifiers. We use Borda Count as combination rule for
these classifiers. Large amounts of experiments have been conducted, on a da-
tabase of more than 6,000 images of real photos, to validate our approaches.
Discussions and future directions for this work are also addressed at the end of
the paper.

1 Introduction

With advances in the multimedia technologies and the advent of the Internet, more
and more users are very likely to create digital photo albums. Moreover, the progress
in digital imaging and storage technologies have made processing and management of
digital photos, either captured from photo scanners or digital cameras, essential func-
tions of personal computers and intelligent home appliances. To input a photo into a
digital album, the digitized or scanned image is required to be displayed in its correct
orientation. However, automatic detection of image orientation is a very difficult task.
Humans identify the correct orientation of an image through the contextual informa-
tion or object recognition, which is difficult to achieve with present computer vision
technologies.

However there are some external information that can be considered to improve the
performance of a detector of image orientation in such a case where the acquisition
source is known: a photo acquired by a digital camera often is taken in the normal
way (i.e. 0° rotation), sometimes rotated by 90° or 270°, but very seldom rotated by
180°; a set of images acquired by digitalization of one film very unlikely has an orien-
tation differing more than 90° (i.e. horizontal images are all straight or all upset),
therefore the orientation of the most of the images belonging to the same class can be
used to correct classification errors.

Since image orientation detection is a relatively new topic, the literature about this
is quite sparse. In [1] a simple and rapid algorithm for medical chest image orientation
detection has been developed. The most related work that investigates this problem
was recently presented in [2][3][4][5]. In [5] the authors have extracted edge-based
structural features, and color moment features: these two sources of information are
incorporated into a recognition system to provide complimentary information for ro-

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 231-238, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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bust image orientation detection. Support vector machines (SVMs) based classifiers
are utilized. In [18] the authors propose an automated method based on the boosting
algorithm to estimate image orientation.

The combination of multiple classifiers was shown to be suitable for improving the
recognition performance in many difficult classification problems [10]. Recently a
number of classifier combination methods, called ensemble methods, have been pro-
posed in the field of machine learning. Given a single classifier, called the base classi-
fier, a set of classifiers can be automatically generated by changing the training set
[11], the input features [12], the input data by injecting randomness, or the parameters
and architecture of the classifier. A summary of such methods is given in [13].

In this work, we assume that the input image is restricted to only four possible rota-
tions that are multiples of 90° (figure 1). Therefore, we represent the orientation de-
tection problem as a four-class classification problem (0°, 90°, 180°, 270°). We show
that a combination of different classifiers trained in different feature spaces obtains a
higher performance than a stand-alone classifier.

Fig. 1. The four possible orientations of acquisition for a digital image: (a) 0°, (b) 180°, (c) 90°,
(d) 270°.

2 System Overview

In this section a brief description of the feature extraction methodologies, feature
transformations, classifiers and ensemble methods combined and tested in this work is
given.

2.1 Feature Extraction

Feature extraction is a process that extracts a set of new features from the original im-
age representation through some functional mapping. In this task it is important to ex-
tract “local” features sensitive to rotation, in order to distinguish among the four ori-
entations: for example the global histogram of an image is not a good feature because
it is invariant to rotations. To overcome this problem an image is first divided in
blocks, and then the selected features are extracted from each block. Several block
decomposition have been proposed in the literature depending on the set of features to
be extracted, in this work we adopt a regular subdivision in NXN non overlapping
blocks (we empirically select N=10) and the features are extracted from these local
regions.
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2.1.1 Color Moments (COL)

It is shown in [14] that color moments of an image in the LUV color space are very
simple yet very effective for color-based image analysis. We use the first order (mean
color) and the second order moments (color variance) as our COL features to capture
image chrominance information, so that for each block 6 COL features (3 mean and 3
variance values of L, U, V components) are extracted. Finally within each block, the
COL vector is normalized such that the sum of each component square is one.

2.1.2 Edge Direction Histogram (EDH)

The edge-based structural features are employed in this work to capture the luminance
information carried by the edge map of an image. Specifically, we utilize the edge di-
rection histogram (EDH) to characterize structural and texture information of each
block, similar as that in [14]. The Canny edge detector [15] is used to extract the
edges in an image. In our experiments, we use a total of 37 bins to represent the edge
direction histogram. The first 36 bins represent the count of edge points of each block
with edge directions quantized at 10 intervals, and the last bin represents the count of
the number of pixels that do not contribute to an edge (which is the difference be-
tween the dimension of a block and the first 36 bins).

2.1.3 Harris Corner Histogram (HCH)

A corner is a point that can be extracted consistently over different views, and there is
enough information in the neighborhood of that point so that corresponding points can
be automatically matched. The corner features are employed in this work to capture
information about the presence of details in blocks by counting the number of corner
points in each block. For corner detection we use the Harris corner detector [16].

2.1.4 Phase Symmetry (PHS)

Phase symmetry is an illumination and contrast invariant measure of symmetry in an
image. These invariant quantities are developed from representations of the image in
the frequency domain. In particular, phase data is used as the fundamental building
block for constructing these measures. Phase congruency [17] can be used as an illu-
mination and contrast invariant measure of feature significance. This allows edges,
lines and other features to be detected reliably, and fixed thresholds can be applied
over wide classes of images. Points of local symmetry and asymmetry in images can
be detected from the special arrangements of phase that arise at these points, and the
level of symmetry/asymmetry can be characterized by invariant measures. In this
work we calculate the phase symmetry image [17] to count the number of symmetry
pixels in each block.

The above COL, EDH, HCH and PHS vectors are normalized within each block. In
order to accommodate the scale differences over different images during the feature
extraction, all the features extracted are also normalized over training examples to the
same scale. A linear normalization procedure has been performed, so that features are
in the range [0,1].

2.2 Feature Transformation

Feature transformation is a process through which a new set of features is created
from existing one. We adopt a Karhunen-Loeve transformation (KL) to reduce the
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feature set to a lower dimensionality, maintaining only the most discriminant features.
This step is performed since the original dimension of the feature space is too large to
make training of classifiers feasible.

Given a F-dimensional data points x, the goal of KL [7] is to reduce the dimen-
sionality of the observed vector. This is obtained by finding & principal axes, denoted
as principal component, which are given by the eigenvectors associated with the k
largest eigenvalues of the covariance matrix of the training set.

In this paper the features extracted are reduced by KL to 100-dimensional vector.

2.3 Classifiers

A classifier is a component that uses the feature vector provided by the feature extrac-
tion or transformation to assign a pattern to a class. In this work, we test the following
classifiers:

e AdaBoost (AB) [9];

e Polynomial-Support Vector Machine (P-SVM) [8];

e Radial basis function-Support Vector Machine (R-SVM) [8]
e Subspace (SUB) [6];

2.4 Multiclassifier Systems (MCS)

Multiclassifier systems are special cases where different approaches are combined to
resolve the same problem. They combine output of various classifiers trained using
different datasets by a Decision Rule [10]. Several decision rules can be used to de-
termine the final class from an ensemble of classifiers; the most used are: Vote rule
(vote), Max rule (max), Min rule (min), Mean rule (mean), Borda count (BORDA).
The best classification accuracy for this orientation detection problem was achieved,
in our experiments, using Borda Count.

For the Borda Count method, each class gets 1 point for each last place vote re-
ceived, 2 points for each next-to-last point vote, etc., all the way up to N points for
each first place vote (where N is the number of candidates/alternatives). The candidate
with the largest point total wins the election.

2.5 Correction Rule

We implement a very simple heuristic rule that takes into account the acquisition in-
formation of an image to correct the classification response. After evaluating all the
photos belonging to the same roll, we count the number of photos labelled as 0° and
180° and we select as correct orientation the one having the larger number of images,
thus changing the labelling of images assigned to the wrong class. The same operation
can be performed for the classes 90° an 270°.

3 Experimental Comparison

We carried out some tests to evaluate both the features extracted and the classifiers
used. In order to test our correction rule we use a dataset of images acquired by ana-
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logical cameras and digitalized by roll film scanning. The dataset is composed by
about 6,000 images from 350 rolls. This dataset is substantially more difficult than
others tested in the literature, since it is composed by 80% indoor photos which are
hardly classifiable: it is especially difficult to detect the orientations of indoor images
(i.e. it is very hard to detect the orientations of a face) because we lack the discrimina-
tive features for indoor images, while for outdoor images there are lots of useful in-
formation which can be mapped to low-level features, such as sky, grass, building and
water.

In figure 2 some images taken from our dataset are shown, where also outdoor im-
ages seem to be difficult to classify.

Fig. 2. Some images from our dataset which appear to be difficult to classify.

The classification results proposed in the following graphics are averaged on 10
tests, each time randomly resampling the test set, but maintaining the distribution of
the images from different classes of orientation. The training set was composed by
images taken from rolls not used in the test set, thus the test set is poorly correlated to
the training data. For each image of the training set, we employ four features corre-
sponding to four orientations (only one has to be extracted, the other three can be
simply calculated).

We perform experimentations to verify that all the sets of features proposed are
useful to improve the performance: the results in figure 3 show that the accuracy in-
creases from 0.499 using only COL features to 0.557 using a combination of all the

0,5